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The phenomenon that the electrical resistivity, defined as the quotient of the electric field and
the electric current density, is independent of the electric field is called Ohm’s law. I show how this
can be explained with a new interpretation of the relaxation time used in the Drude model.

The electrical resistivity can be described by the Drude
model with the formula

ρ =
m

ne2τ
, (1)

where m is the mass and e the charge of an electron,
n is the density of electrons, which are constants, and τ
the relaxation time. In it the relaxation time is inter-
preted as the period of time in which an electron loses its
electric excitation energy, i.e., its drift velocity becomes
zero, whereas its thermal excitation energy is assumed
to determine the magnitude of the relaxation time. But
to my mind, it is reasonable to include all excitation en-
ergies, i.e., the relaxation time is the period of time in
which an electron loses its total excitation energy which
thereby determines the magnitude of the relaxation time.
In general the total excitation energy constitutes of the
electric and the thermal excitation energy,

E = Eel + Etherm. (2)

The orders of magnitude can be estimated with the
Fermi model

Eel =
1
2
m (vF + vD)2 − 1

2
mv2

F

=
1
2
m

(
2vF vD cos γ + v2

D

)
≈ mvF vD, (3)

where vF is the Fermi and vD the drift velocity, and
vF � vD and cos γ = 1 is used, and with the equiparti-
tion relation

Etherm ≈ kBT. (4)

Under typical conditions one finds vF ≈ 106 ms−1,
vD ≈ 10−3 ms−1, and T ≈ 300 K, which means that

Eel ≈ 10 neV, (5)
Etherm ≈ 10 meV. (6)

Hence, we have Etherm � Eel which implies that
E = Etherm = const and τ(E) = const which again
implies that ρ = const which is the statement of Ohm’s

law. Furthermore, the new point of view predicts the
limit Etherm � Eel for the validity of Ohm’s law, i.e., as
soon as Eel reaches the order of magnitude of Etherm, by
large drift velocities or small temperatures, the electrical
resistivity starts to depend on the electric field.

Just as well, of course, we can look at the equation of
motion of an electron. In the Drude picture one finds

m
dv

dt
= −eE −mvD

τ
, (7)

where E is the applied electric field which accelerates
the electron and the second term describes the resistance
against the acceleration. For the case that the electric
field is switched off (E = 0), one obtains so

v(t) = vD

(
1− t

τ

)
, (8)

which means that τ is the period of time in which the
drift velocity becomes zero. In my new picture, though,
I say that Eq. (7) is incomplete and must be completed
by the acceleration resulting from the thermal excitation
energy. In normal metals, for example, electrons interact
with thermally excited phonons and get in this way accel-
erated. The corresponding force I formulate in analogy
to the resistance

Etherm

vτ
=
kBT

vF τ
, (9)

where the energy (4) is gained in the period of time
τ , and thus in the distance vτ . The introduced total ve-
locity v constitutes of the Fermi velocity vF , the ther-
mal velocity vtherm, and the drift velocity vD, where
typical values for the velocities are vF ≈ 106 ms−1,
vtherm ≈ 104 ms−1, and vD ≈ 10−3 ms−1 which means
that vF � vtherm, vD which is why the total velocity is
set equal to the Fermi velocity. Now, using the isotropy
of the thermal acceleration, Eq. (7) becomes

m
dv

dt
= −eE ± kBT

vF τ
−mv0

τ
, (10)

where the resistance is adjusted to the new situation.
In it vD becomes v0 which constitutes of both vD and
vtherm, and τ becomes the period of time in which v0
becomes zero. For the steady case (dv/dt = 0) I get then



2

v0 = −eτ
m
E ± kBT

mvF
(11)

= vD + vtherm. (12)

Hence, just as for the above considerations, because

vtherm � vD, or in fact |vtherm| � |vD|, and thus vtherm

dominates the magnitude of the relaxation time, one ob-
tains τ = τ(v0) = τ(vtherm) = τ(T ) and the indepen-
dence of τ from E , which is Ohm’s law.
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