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The mystery of understanding superconductivity, which kept physicists busy over the last 100
years, is considered to be solved by equating two equations. First, one takes Heisenberg’s uncertainty
relation t(E) = 2~/E. Second, one takes the temperature-dependent relaxation time found in the
Drude formula for the electrical resistivity t(T ) = m/ρ(T )ne2, where the temperature T is identified
with the excitation energy E via the equipartition relation. By means of the quantities concerning
time, energy, space, and momentum obtained from the equating all major phenomena connected
with superconductivity, such as, the perfect conductivity, the energy gap, the specific heat, the
type I and the type II superconductors, the isotope effect, and the emergence of high-temperature
superconductivity can be explained. As one example, one obtains the isotope effect Tc ∝ Θ5/4 if
the electrical resistivity is described by the Bloch-Grüneisen law ρ(T ) ∝ (T/Θ)5 and T is identified
with Tc. To make the most use of them the quantities must be interpreted correctly. This matter
is tackled by formulating a new postulate. In it the quantities are labeled with the expression
“virtual,” e.g., the virtual relaxation time and the virtual excitation energy. And its application to
solid-state physics yields descriptions which are illustrative, simple, precise, and complete in a way
which is not reached by any theory of superconductivity. This is why it seems reasonable that this
is the door that needed to be opened to reveal the heart of superconductivity and by that to be
able to understand superconductivity. In addition, the postulate yields fundamental insights into
the nature of interactions. Therefore, if the presented views turn out to be true, this theoretical
work improves our understanding not only of superconductivity, but of physics in general on a grand
scale.

I. INTRODUCTION

If one decides to create a theoretical work in physics,
one should make oneself clear that there are two ap-
proaches to tackle the challenge. Firstly, one postu-
lates a new concept, e.g., a mathematical equation or
a condition for a physical quantity, which is not ques-
tioned. Secondly, one takes an existing concept and uses
it in a new way. In principle, the second approach is
preferred because it is an endeavor of physicists to de-
scribe nature with the least necessary number of con-
cepts. Nevertheless, as the past has shown, from time
to time the introduction of a new concept is unavoid-
able to be able to explain certain phenomena. The last
great new concepts were the quantum physical equations
and the constancy of the speed of light postulated at the
turn of the nineteenth century by, among others, Ein-
stein, Planck, Schrödinger, and Heisenberg. The ques-
tion that opens up now is which of the two approaches
has to be used to explain superconductivity, which is the
challenge tackled within this work. I believe that the first
one has to be used which is why a new concept in form
of a new postulate is introduced. A circumstance that
supports the choice is that physicists had great difficul-
ties with finding an explanation with the existing con-
cepts (there exists the large period of time of nearly 50
years between the experimental observation in 1911 by
Kamerlingh Onnes1 and the theoretical explanation in
1957 by Bardeen, Cooper, and Schrieffer2), and with the
discovery of high-temperature superconductivity in 1986
by Bednorz and Müller,3 it turned out that the found
explanation does not cover the phenomenology of super-
conductivity by far. This situation implies that a new

concept has to be introduced and that the heart of su-
perconductivity is still not revealed.4 The statement by
Feynman5 “Quantum mechanics was developed in 1926,
and in the following decade it was rapidly applied to all
kinds of phenomena with an enormous qualitative suc-
cess. The theories of metals and other solids, liquids,
chemistry, etc. came out very well. But as we continued
to advance the frontiers of knowledge, we left behind two
cities under siege which were completely surrounded by
knowledge although they themselves remained isolated
and unassailable,” where the two cities were superfluid-
ity and superconductivity, describes the same difficulty.
Thus, to my mind, the reason for “leaving the city of
superconductivity behind” is that quantum mechanics is
not able to explain superconductivity (in analogy to the
reason why classical physics is not able to explain the
radiation spectrum of a black body). Next, the ideas
behind the new concept are presented.

Its core is the equating of Heisenberg’s uncertainty re-
lation

t(E) =
2~
E
,

and the excitation-energy-dependent relaxation time
found in the Drude formula for the electrical resistivity

t(E) =
m

ρ(E)ne2
.

By that one gets two equations each with two unknown
quantities which means that by equating them one ob-
tains E0 and t0. Before continuing with my interpreta-
tion, I say two things. Firstly, in all literature I came
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across such an equating was not found which makes it
reasonable to suppose that the approach is new. Sec-
ondly, I am convinced that it is worthwhile to concern
oneself with it and that it is a promising instrument to
solve physical problems. Next, my interpretation is pre-
sented. The starting point is that it is assumed that
there exists a lower limit for the excitation energy of a
particle in certain systems (in analogy to the upper limit
for the velocity given by the speed of light). The min-
imum excitation energy E0 is a feature of nature which
is not questioned. The magnitude of E0 is determined
by equating Heisenberg’s uncertainty relation and the
excitation-energy-dependent relaxation time. On the one
hand, Heisenberg’s uncertainty relation is chosen because
it is often used to explain minimum energies. They are
explained by an argument like “for the period of time
t = 2~/E the conservation of energy can be violated
and a particle is able to gain the energy E.” On the
other hand, it is obvious to choose the excitation-energy-
dependent relaxation time because it describes the mean
period of time within which a particle loses its excitation
energy. And, in an equilibrium, the expressions t = 2~/E
and t = m/ρne2 are equated. The question that opens
up next is how a particle is able to exhibit a minimum
excitation energy. In the picture developed so far6 the ex-
citation energy is in general given by the thermal energy
which is given by the equipartition relation

E =
3
2
kBT,

if one looks at a particle with three translational de-
grees of freedom and quantum effects are neglected.
Thus, the minimum energy E0 is also identified with a
minimum temperature T0. For temperatures T > T0

no new effects occur because the thermal exceeds the
minimum energy. However, for temperatures T < T0

there must exist a mechanism responsible for the con-
stancy of E0 which looks as follows: A particle exhibits
an additional excitation energy which is called “virtual”
excitation energy Ev. The total excitation energy con-
stitutes of the virtual and the thermal energy and equals
E0. Therefore Ev increases with decreasing T because
then the contribution of the thermal energy to E0 de-
creases which means that the contribution of the virtual
energy has to increase. And, finally, at T = 0 K, one gets
Ev = E0. Furthermore, it is assumed that the virtual
energy has a second function. Namely, it is responsible
for the emergence of a new interaction. Its appearance
is that a particle performs a virtual relaxation process
in which the energy Ev is lost within the period of time
tv. And, simultaneously, a virtual momentum pv is lost
within the distance xv. By that one has the characteristic
quantities which describe the interaction. By performing
the relaxation process, a particle gives off a part of Ev
which is called ∆v. Thus, by interacting with each other,
particles exhibit an energy which is lower than E0 by ∆v,
i.e., E0 −∆v instead of E0. The quantity ∆v is treated

in a related way to Ev which means that ∆v is identi-
fied with a temperature Υv and, at T = 0 K, one gets
∆v = ∆0 and Υv = Υ0. In Fig. 1 these considerations
are illustrated.
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FIG. 1: Excitation energy E of a particle to its minimum
excitation energy E0 vs T/T0 for E0/∆0 = T0/Υ0 = 5. The
new concept predicts that there are systems which exhibit
the lower limit E0 for E, whereas the picture developed so
far predicts that E is proportional to T for all temperatures
(dashed line). Furthermore, by interacting with each other,
particles give off the energy ∆v at T < Υ0.

Next, I make some remarks. A fact that goes with the
first approach is that one enters unknown territory. This
makes it challenging to elaborate a work which exhibits
no false views. I struggled with these difficulties. This is
why it is conceivable that some elaborated views need to
be improved. Hence, the statement “solving the mystery
of superconductivity” in the title of the article is meant to
describe that an approach is presented which has the po-
tential to be the door that needed to be opened to reveal
the heart of superconductivity. And, I could not with-
stand to formulate a title which implies that the mystery
of superconductivity, which kept physicists busy over the
last 100 years and which almost every great physicist
has tried and failed to solve, can be solved by an easy
approach of “equating two equations.” Finally, only time
tells if the situation is that astounding. In the concluding
paragraph the organization of the article is discussed.

In Sec. II the postulate is formulated and Sec. III
contains its interpretation. In Secs. IV and V it is ap-
plied to solid-state physics and thereby to superconduc-
tivity. Whereas Sec. IV is concerned with the virtual
energies, and in case of the antiferromagnetic lattice with
the excitation-energy-dependent relaxation time, Sec. V
deals with all major phenomena connected with super-
conductivity except the Josephson effect. For the reader
who wants to glance at the results in Sec. V, I point
out that the critical temperature Tc is called Υ0 and
the energy gap ∆ at T = 0 K is called ∆0 [Tc = Υ0

and ∆(T = 0 K) = ∆0]. At last, I say something
about Appendix B. As the reader may have noticed, the
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excitation-energy-dependent relaxation time is set equal
to the relaxation time in the Drude formula despite of
that it is interpreted differently. However, it turns out
that if it is interpreted as an excitation-energy-dependent
relaxation time new insights to the electrical resistivity
follow, such as, an explanation for Ohm’s law and a new
limit for its range of validity, presented in Appendix B.

II. THE POSTULATE

The following postulate is made:

There exists a second form of excitation en-
ergy besides the thermal excitation energy.
The new quantity is called the “virtual” ex-
citation energy Ev. A particle exhibits a vir-
tual excitation energy if the product of Ev
and the relaxation time tv of the virtually ex-
cited state becomes

Evtv = 2~. (1)

Furthermore, the virtual energy is connected
with virtually excited momenta via the dis-
persion relation E(p) of the treated system.
For the virtual momentum pv an expression
similar to (1) may be formulated

pvxv = 2~, (2)

where xv describes the mean path within
which the virtual energy is lost. Therefore,
the quantity xv is called the virtual “relax-
ation path.” And, by means of performing
virtual relaxation processes, in which the en-
ergies Ev and the momenta pv are lost and
exchanged, particles are able to interact with
each other.

III. INTERPRETATION

With the introduction of a second excitation energy
an additional point must be considered when treating a
physical problem. This is achieved by checking if con-
dition (1) is fulfilled. If this is the case, the situation
changes from the picture developed so far and virtual
excitation processes must be taken into account. The
expression “virtual” is used for the new quantities since
processes resulting from the postulate are seen to be of
the same kind as virtual processes which have already
been introduced in quantum theories. However, the ap-
proach within this work treats them from a new perspec-
tive. And, both virtual and thermal processes are treated
in a related way. Thus, with the equipartition relation,

Ev is identified with a virtual temperature Tv too. The
introduction of an additional excitation energy was moti-
vated because it makes an energy source available which
can provide the energy necessary for the creation of vir-
tual particles which are used to mediate an interaction.
The examinations done showed that the particles that ex-
hibit a virtual energy were fermions. Whereas the ones
that are created during a relaxation process, in which
their creation is responsible for the decrease of Ev, were
bosons. The last-mentioned particles are called virtual
particles. If another kind of particle can be considered
for the appearing particles remains open.

Since (virtual) relaxation processes play a key role in
my concept, the in this context appearing quantities re-
garding time and space are interpreted next. Regarding
time, there exists one such quantity. This is the relax-
ation time tv which describes the mean period of time
within which a particle loses its virtual excitation en-
ergy Ev due to virtual scattering processes. It is noted
that this relaxation time is, in general, not equal to the
period of time within which the virtual energy is most
likely lost. Regarding space, there exist two quantities
between which has to be distinguished. First, there is
the relaxation path xv. It describes the mean path trav-
eled by a particle in the direction of the virtual momen-
tum pv during a relaxation process. Second, there is
the quantity lv which is called the virtual “relaxation
length” and which is introduced quantitatively in Sub-
sec. IV A. It describes the mean total path traveled by a
particle during a relaxation process. Two quantities are
needed because a particle may exhibit a net momentum
pg with a finite part perpendicular to pv which leads to
a movement as well. In Fig. 2 they are depicted for
an exemplary case. Now, the five quantities Ev, tv, pv,

p
g

p
vt = 0

0 < t < t
v

t = t
v

x
v

l
v

γ

FIG. 2: Time-dependent momentum and path traveled by a
particle during a relaxation process in which the energy Ev
is lost within the period of time tv. The total traveled path
lv constitutes of the part xv which results from the virtual
momentum pv and the net momentum parallel to pv plus the
part which results from the net momentum perpendicular to
pv. The angle between pg and pv is called γ.

xv, and lv, which build the cornerstones of the new con-
cept, are introduced. Furthermore, I formulate an ex-
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pression for the excitation-energy-dependent relaxation
time which shall contain the decisive features of a relax-
ation process. There are seen to be three of them. First,
there is the scattering frequency νs which describes the
frequency of the scattering processes (i.e., the frequency
of the creation of particles). Second, there is the mean
number of particles N̄ created at each scattering process.
Third, there is the mean energy Ē of a created particle.
If all features are taken into account I get

t(E) =
1
νs

1
N̄Ē

E, (3)

because the period of time between two subsequent
scattering processes equals ν−1

s and at each the amount
N̄Ē of the excitation energy E is lost.

Next, the question that needs to be answered to find
out if a particle exhibits a virtual energy is formulated
again: In a given configuration, is it possible that a par-
ticle exhibits the energy Ev so that it would take the
mean period of time tv = 2~/Ev to lose it? To an-
swer the question one needs to know a second relation
which combines Ev and tv. This relation has to be found
by examining the given configuration. Furthermore, the
magnitude of Ev is expected to depend on the present
scattering mechanisms. To handle the behavior, they are
divided into two forms. To the first virtual scattering
mechanisms, which are responsible for virtual scatter-
ing processes and thereby for the loss of Ev, belong. To
the second real scattering mechanisms, which shall in-
clude all scattering mechanisms except the virtual ones,
belong. In analogy to the virtual, the real scattering
mechanisms are characterized by a real relaxation time
tr. Further it is assumed that a particle can only expe-
rience virtual and/or real scattering processes and not
any kind of “mixture” of both, e.g., the creation of a
particle due to the virtual as well as the thermal energy.
A change of the magnitude of Ev can now be expected
because a particle experiences real optionally to virtual
scattering processes. This influence is illustrated in Fig.
3 and is discussed in the following. The model I intro-
duce to describe the influence works with the assumption
that a particle sees points in space where it is possible to
create virtual particles through a virtual scattering pro-
cess. The assumption is inspired by the situation of a
free electron in a solid. There, the electron is moving
through a lattice of ions and every ion can be excited by
means of the creation of a particle, e.g., the creation of
a phonon. Thus, every ion stands for such a point. Fur-
thermore, while moving through a medium, a particle
experiences virtual and/or real scattering processes with
properties given by the present scattering mechanisms.
In case of Fig. 3(a) only virtual scattering mechanisms
are present. In case of Figs. 3(b) and 3(c) real scat-
tering mechanisms are present additionally. This leads
to the situation that, with a finite probability, a particle
experiences a real instead of a virtual scattering process
which makes it more difficult to lose Ev since the loss

possible scattering

real scatteringvirtual scattering

(a)

(b)

(c)

FIG. 3: Influence of real scattering mechanisms on a virtual
relaxation process. For movement (a) only virtual scattering
mechanisms are present. For movements (b) and (c) real ones
are present additionally, differently strong.

arises from virtual scattering processes. Hence, the re-
laxation time increases and, in order to still satisfy con-
dition (1), Ev has to decrease. This kind of decrease is
possible in Fig. 3(b), whereas in Fig. 3(c) the real dom-
inate the virtual scattering mechanisms so that they do
not take place and the virtual energy vanishes. At last,
I present the formalism with which the second relation
which combines Ev and tv is derived. To begin with, the
real scattering mechanisms are neglected. Then, only vir-
tual ones must be taken into account. In the next step,
the excitation-energy-dependent relaxation time t(E) of
the system7 is inserted into (1) by replacing t by tv and
E by Ev. If function t(E) allows the product Et to be-
come 2~, one gets the two quantities E0 and t0 and a
virtual energy may emerge. Furthermore, the obtained
results serve as a basis for describing real systems with
real scattering mechanisms. By examining the interplay
between the virtual and the real scattering mechanisms
it is then possible to determine the change of Ev from
E0. The consequences of the interplay are shown in Fig.
4, which can be compared with Fig. 3.

After determining Ev, it is possible to determine the
virtual momenta. For that, the virtual energy is ex-
pressed as
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FIG. 4: Influence of real scattering mechanisms on the magni-
tude of Ev. Starting from neglecting them (a), their presence
is increased (b), and, finally, their presence is increased so
much that they dominate the virtual scattering mechanisms
(c).

Ev = Ee − Eg, (4)

where Ee is the energy of the virtually excited state
and Eg of the ground state. An analog expression is
formulated for the virtual momentum

pv = pe − pg, (5)

where pe is the momentum of the virtually excited
state and pg of the ground state. By combining the dis-
persion relation E(p) with (4) and (5) one obtains the
virtual momenta pv which lead to an excitation energy
Ev. From pv again, the relaxation path xv can be deter-
mined with relation (2). This can be done because it is
assumed that the part of xv perpendicular to pv vanishes,
i.e., xv ‖ pv. The assumption rests on the interpretation
of xv being the mean path traveled in the direction of
pv. Hence, relation (2) can be put to

pvxv = 2~, (6)

when one is interested in the relationship between the
absolute values of pv and xv.

Now, the phenomenon how a particle maintains a con-
stant virtual energy is treated. At first, some general
remarks are made. In physical systems particles tend to
occupy states with a minimum energy. To get into the
energetically lowest lying state, i.e., the ground state, a
particle gives off its excitation energy to its surrounding
medium. Furthermore, the surrounding medium exhibits
in general also mechanisms responsible for a gain of en-
ergy. In an equilibrium both mechanisms cancel each
other out and a particle maintains a constant excitation
energy. Since a particle in such a situation never loses
its excitation energy, relaxation processes are treated as
hypothetical ones by neglecting the gain of energy. Next,
we return to the maintaining of the virtual energy. In
case of the thermal energy of an electron in a solid, the

gain arises from the annihilation of thermally excited par-
ticles. The corresponding mechanism for the virtual en-
ergy Ev is assumed to work as follows: A particle “con-
jures up” virtual particles and uses them to maintain
Ev. By the expression “conjure up” I mean that virtual
particles are created out of nothing and the state of the
particle remains unchanged. To prevent the loss of vir-
tual energy, which is assumed to arise solely from the
creation of virtual particles, each time a virtual particle
is created a conjured up virtual particle is also annihi-
lated. The annihilated possess equivalent properties to
the created particles and compensate the loss. Further-
more, the created particles vanish. In order that there
is enough energy available, a particle conjures up virtual
particles with the total energy Ev. These are chosen so
that they compensate for the created particles in the hy-
pothetical relaxation process. This leads to the situation
that the particle is constantly surrounded by virtual par-
ticles which would be created during a relaxation process.
In Fig. 5 these considerations are depicted.

possible scattering

real scatteringvirtual scattering

conjured up virtual particle

(a)

(b)

FIG. 5: Conjuring up of virtual particles to maintain Ev. For
relaxation process (a), Ev would be lost through the creation
of 8 virtual particles. For relaxation process (b), Ev would
be lost through the creation of 6 virtual particles. Virtual
particles are conjured up according to the relaxation process.

Up to now, the interpretation was carried out in a
single-particle picture in which a single particle is moving
in a potential which determines its states and how tran-
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TABLE I: Symbols to describe the quantities related to a
positive and a negative virtual energy.

Excitation Relaxation Momentum Relaxation
energy time path

+ Ev tv pv xv
− ∆v τv πv ξv

Relaxation Temperature Velocity
length

+ lv Tv vv
− λv Υv νv

sitions between them take place. By that the dispersion
relation and the excitation-energy-dependent relaxation
time are determined and one can describe the virtual pro-
cesses. However, as soon as virtual processes of different
particles influence each other, the single-particle must be
extended to a many-particle picture. There were found
two scenarios in which the influence becomes apparent.
The first in which additional virtual particles influence
the relaxation time is only noticeable in the solid-state
configuration of Subsec. IV C. The second manifests it-
self in the emergence of a new interaction and is used
to explain the interaction that causes superconductivity.
Whereas the first scenario is treated in Subsec. IV C, the
final part of the interpretation is dedicated to the second
scenario which is of great importance for the understand-
ing of physics.

To begin with, I remind that so far virtual relaxation
processes were treated hypothetically. Consequently, a
particle remains in its virtually excited state. But in
principle, every particle that exhibits a virtual energy is
able to perform a virtual relaxation process. Actually,
the event that a particle uses this ability and performs a
virtual relaxation process is seen to be equivalent to the
situation which is in the picture developed so far known
as “a particle undergoes a change of the state of mo-
tion because of experiencing an interaction.” Thus, the
picture developed within this work says that the conse-
quences of a force acting on a particle can be described
by relaxation processes. By that also the quantities tv,
xv, and lv become useful in a concrete way. Further-
more, through a relaxation process, a particle gives off
on average a part of its virtual energy in form of virtual
particles in the surrounding medium. The part given
off is identified with a negative virtual excitation energy
∆v and quantities related to it are used to describe the
movement. To distinguish between both forms of appear-
ance, these quantities are represented by Greek letters.
In Table I all quantities with their symbols are listed.
As for the positive virtual processes, a negative virtu-
ally excited state is assigned to a particle which reduces
the difference between both to the algebraic sign. Now,
the quantities related to a negative virtual energy are
interpreted. The negative virtual energy describes the
energy given off on average through a performed virtual
relaxation process and, analogously, the negative virtual

momentum describes the momentum given off on average
through a performed virtual relaxation process. Further-
more, since the virtual temperature and the virtual ve-
locity are connected with the virtual energy and the vir-
tual momentum, the interpretation holds also for them.
In addition, it implies that πv ‖ pv and νv ‖ vv. The
remaining quantities, namely, the relaxation time, the re-
laxation path, and the relaxation length are equivalent to
the positive, tv = τv, xv = ξv, and lv = λv. In spite of
the equivalence new symbols are introduced to be able to
tell which form of appearance is used in the description.
At last, I derive the relationship between the quantities
which are not equivalent, Ev 6= ∆v, pv 6= πv, Tv 6= Υv,
and vv 6= νv, for a free particle with the dispersion rela-
tion E = p2/2m, where m is its mass. The energy and
the momentum given off are obtained by equating two ex-
pressions for the relaxation path xv. To begin with, the
connection between Ev and pv is formulated according
to (4) and (5)

Ev =
1

2m
(pg + pv)

2 − 1
2m

p2
g

=
1

2m
(2pgpv cos γ + p2

v), (7)

where γ is the angle between pg and pv. Next, the
first expression is written, with the aid of (6), as

xv =
2~
pv
. (8)

The second expression is written as

xv = v̄′tv, (9)

where v̄′ describes the mean velocity during a relax-
ation process in the direction of pv. Then, by equating
(8) and (9) and using (1) and (7), one obtains

v̄′ = vg cos γ +
1
2
vv, (10)

when one connects the velocity v with the momentum
p via v = p/m. Since the term “vg cos γ” corresponds to
an offset part of the net velocity in the direction of pv, the
part of the virtual velocity given off on average becomes
vv/2. Furthermore, since the sum of the positive and the
negative virtual velocity must equal vv/2 and νv ‖ vv,
one gets

νv =
1
2
vv, (11)

πv =
1
2
pv. (12)
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Next, an expression analog to (7) is formulated for the
negative virtual energy

∆v =
1

2m
(2pgπv cos γ + π2

v), (13)

where γ is the angle between pg and πv which equals
the one between pg and pv. In Fig. 6 the results are
illustrated. And finally, with the equipartition relation

p
g

p
v

π
v

p
g

p
v

π
v

p
g

p
v

π
v

E v

∆ v∆ v

∆ v
γ = 0° γ = 90°γ = 45° 

FIG. 6: Three configurations of pv for the identical value
Ev and the quantities ∆v and πv resulting from a performed
relaxation process.

for three translational degrees of freedom, ∆v is identified
with a negative virtual temperature

∆v =
3
2
kBΥv. (14)

The concluding paragraph deals with the interaction
predicted by the postulate.

The question that needs to be answered is how the
change of the state of motion can be described from the
perspective of relaxation processes. Since this perspec-
tive is new, a new set of rules needs to be introduced
to make use of it. Therefore, I introduce one containing
three rules after which interactions via virtual relaxation
processes are treated. The three rules are:

RULE I: If an interaction takes place, then
in the form that a particle first performs a
virtual relaxation process and, directly there-
after, performs a process inverse to a virtual
relaxation process performed by another par-
ticle. Within the inverse relaxation process
virtual particles are annihilated in inverse or-
der as they were created. This means that the
energy and the momentum lost by one parti-
cle is gained by another particle and the other
way around. Throughout the exchange no

conservation laws are violated which means
that every created virtual particle must pos-
sess the right properties so that it can be an-
nihilated.
test
RULE II: Particles interact with each other
if under all virtual momenta every particle
exhibits there are two parallel to each other.
Additionally, the two momenta must lie in
line when they point through the endpoints
of every particle after performing the relax-
ation process. If these conditions are fulfilled,
particles perform virtual relaxation processes
by losing the corresponding momenta.
test
RULE III: The virtual energy is lost through
the creation of a virtual particle and gained
through the annihilation of a virtual parti-
cle at a point which exhibits no conjured up
virtual particle. Thus, the magnitude of ∆v

is determined by the probability of finding a
free point. After the relaxation processes vir-
tual particles are relocated so that they are
annihilated within the inverse relaxation pro-
cesses.

In Figs. 7, 8, and 9 all rules are illustrated.
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FIG. 7: Interaction between two particles via virtual relax-
ation processes in which the virtual energies are lost through
the creation of 2 and 3 virtual particles (Rule I).
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FIG. 8: Time-dependent traveled paths of two interacting
particles (Rule II). It is chosen that tav = tbv = tv, pav = pbv =
pv, pag = pbg = pg, and γ = 90◦. Depending on in which
direction pv is lost, one can construct an attractive and a
repulsive interaction.

IV. APPLICATION TO
SUPERCONDUCTIVITY (PART ONE)

In this and the next section the postulate is applied to
solid-state physics and thereby to superconductivity. In
the first part virtual energies Ev in two solid-state con-
figurations are determined. The results are the starting
point for further investigations in Sec. V. Before focusing
on the two materials, the relaxation length is introduced
quantitatively.

A. Relaxation length

The virtual relaxation length lv describes the mean to-
tal path traveled by a particle during a relaxation process

possible scattering

creation of a virtual particle 

t = -t
v

t = 0

t = t
v

annihilation of a virtual particle 

FIG. 9: Exchange of virtual particles (Rule III). A virtual
particle can only be exchanged if there are two points which
exhibit no conjured up virtual particle.

and thus, if v̄ is the mean velocity during the relaxation
process and (1) is used, one obtains

lv = v̄tv = v̄
2~
Ev

. (15)

Furthermore, with the aid of (10), one gets

v̄ = vg +
1
2
vv. (16)

If vg = 0, lv and xv must equal each other. This can be
checked by inserting (16) into (15) and using E = mv2/2,

lv =
2~
mvv

=
2~
pv

= xv. (17)

B. Normal metals

The first configuration the postulate is applied to are
the normal metals. Within this article materials are
called “normal” metals if their temperature-dependent
relaxation time for electrons can be described by the
Bloch-Grüneisen law
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t(T ) = A

(
Θ
T

)5

J−1

(
Θ
T

)
, (18)

where A is a material-dependent constant, Θ the Debye
temperature, and J(Θ/T ) the integral

J

(
Θ
T

)
=
∫ Θ

T

0

x5

(ex − 1)(1− e−x)
dx. (19)

In the following, it is assumed that the temperatures
with which is dealt are at maximum of the order of 50 K
and that 50 K� Θ.8 Then, integral (19) becomes

lim
1�Θ

T

∫ Θ
T

0

x5

(ex − 1)(1− e−x)
dx = 124, (20)

and (18) can be reduced to

t(T ) =
A

124

(
Θ
T

)5

. (21)

Function (21) was derived for electrons relaxing due
to scattering on phonons. The T−5-dependence is char-
acteristic for electron-phonon scattering, whereas a T−2-
dependence is found for electron-electron scattering and,
in addition, s-d electron scattering may contribute to the
scattering.9 Furthermore, since electrons in metals can be
described by a free-electron-gas model, the equipartition
relation for three translational degrees of freedom

E =
3
2
kBT (22)

is used to identify E with T . Now, it is possible to
convert (21) into t(E). Equating (1) and (21) and using
(22) yields then

T0 =
(
kBAΘ5

165~

) 1
4

, (23)

E0 =
3
2
kB

(
kBAΘ5

165~

) 1
4

. (24)

To calculate T0, the quantity AΘ5 is determined by
means of the electrical resistivity given by the Drude for-
mula

ρ =
m

ne2t
, (25)

where m is the free electron mass and n the density of
free electrons. Combining (21) with (25) yields

TABLE II: Experimental values of the electrical resistivity ρ
at T = 77 K and the density of free electrons n. The quantity
AΘ5 is determined by (26) and T0 by (23).

Experimenta Theory
Normal ρ n AΘ5 T0

metal (10−8 Ωm) (1028 m−3) (10−3 sK5) (K)
Cd 1.6 9.27 8.03 50
Zn 1.1 13.2 8.2 51
Ga 2.75 15.4 2.81 39
Al 0.3 18.1 21.93 65
Tl 3.7 10.5 3.07 40
In 1.8 11.5 5.75 46
Sn 2.1 14.8 3.83 42
Hg 5.8 8.65 2.37 37
Pb 4.7 13.2 1.92 35

aN. W. Ashcroft and D. N. Mermin, Festkörperphysik (Olden-
bourg, München, 2007).

AΘ5 =
m

ρne2
124T 5. (26)

In Table II experimental values of ρ at T = 77 K and
n for different normal metals are listed plus AΘ5 and T0

are calculated.
Next, the interplay between virtual and real scattering

mechanisms is examined. I restrict the examinations to
real scattering mechanisms resulting from thermal scat-
tering mechanisms, i.e., with the ones resulting from lat-
tice imperfections is not dealt and about their influence
can only be said that it is expected to have the qualitative
appearance discussed in the interpretation. To obtain the
quantitative influence of thermal scattering mechanisms,
I look at how Ev changes from E0. Since their increasing
presence decreases Ev, the following equation is formu-
lated

Ev = E0 − Et, (27)

where Et is the part of E0 which cannot be lost be-
cause, with a finite probability, an electron experiences
thermal instead of virtual scattering processes. By mak-
ing the assumption that the scattering probability is pro-
portional to the inverse relaxation time t−1, one can write

Et = E0
Pt
P0

= E0
t0
tt
, (28)

where Pt is the probability for thermal scattering, P0

for virtual scattering, and tt is the thermal relaxation
time. Then, by combining (27) and (28) with (21), one
gets

Ev = E0

[
1−

(
T

T0

)5
]
. (29)
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Thus, the virtual energy decreases with increasing T
and vanishes for T > T0.

Finally, I show that a form of Matthiessen’s rule holds
also for the interplay between virtual and thermal scat-
tering mechanisms. This can be seen by inserting (28)
into (27) and using (1)

1
tv

=
1
t0
− 1
tt
. (30)

C. Antiferromagnetic lattice

The second configuration the postulate is applied to
is an antiferromagnetic lattice. I restrict the application
to a two-dimensional quadratic lattice as it can be found
in a cuprate superconductor in form of the CuO2 plane.
However, by using a similar approach, it should also be
possible to apply it to other configurations. To begin
with, a summary of the properties and decisive mecha-
nisms of the CuO2 plane, as they look like from my point
of view, is made, which is a proposal how the CuO2 plane
can be treated which is still an unsettled question.

In the undoped insulating CuO2 plane every magnetic
moment, connected with a total spin S 6= 0, can be as-
signed to a copper ion with the electronic configuration
[Ar]3d9 and S = 1/2. The oxygen ions possess S = 0
and are responsible for the antiferromagnetic coupling.
Adding an electron to (electron-doping) and removing
one from the CuO2 plane (hole-doping) leads to [Ar]3d10

and [Ar]3d8. And, from Hund’s rules follows that the
total spin becomes S = 0 and S = 1, see Fig. 10. Fur-

1/2 0 1S

d9 d10 d8

FIG. 10: Copper ions at different states of doping.

thermore, there are two mechanisms which determine the
properties of the lattice. First, a strong Coulomb inter-
action [O(1 eV)] leads to a localization of the d-electrons
at the lattice points of the copper ions. Second, be-
tween nearest-neighbor localized electrons acts an anti-
ferromagnetic coupling [O(100 meV)] leading to the ar-
rangement shown in Fig. 11.

Now, I continue with the virtual processes. To be-
gin with, the function t(E) has to be found. Because of
the lack of such an established function, a new model is

a
a

FIG. 11: Antiferromagnetic arrangement of the magnetic mo-
ments, where a is the lattice constant of the quadratic lattice.

introduced in which the movement of a charge carrier is
described by a series of hops. It is assumed that the hops
a charge carrier is able to perform consist of hops to one
of the eight nearest-neighbor lattice points of the copper
ions and that the path between two lattice points is taken
so that a minimum number of hops is needed.10 The eight
hops are divided into two groups. To the first hops in the
direction α = j × 90◦, where j = 0, 1, 2, 3, belong (α90◦).
To the second hops in the direction α = k × 45◦, where
k = 1, 3, 5, 7, belong (α45◦). In Fig. 12 the hops with
the angle α are shown. The question that needs to be

α

α
90°

α
45°

FIG. 12: The eight hops a charge carrier is able to perform.
From them the movement is constructed.

answered now is how much energy each hop costs. In
the undoped configuration, where the Coulomb interac-
tion dominates, a hop requires an excitation energy of
the order of 1 eV. Because of the largeness of the value
compared to typical excitation energies (e.g., the thermal
excitation energy at room temperature is of the order of
50 meV), most electrons are not able to hop and become
localized, which manifests itself as an insulating behavior
and no virtual processes occur. However, the situation
changes as soon as the CuO2 plane is doped and some
lattice points possess a charge ±e compared to others.
Whereas in the undoped a hop of an electron means that
the charge of one lattice point becomes 2e larger than of
a second, which causes the large energetic costs, in the
doped configuration a hop of a charge carrier means only
that the charge states of two lattice points are exchanged
as it is illustrated in Fig. 13. Therefore, a hop of a charge
carrier costs no energy due to the Coulomb interaction
and the mechanism responsible for the loss remains the
antiferromagnetic coupling. How it looks like is discussed
next. For a better understanding in Figs. 14 and 15 the
considerations to come are illustrated. For electrons, as
for holes, it is assumed that a hop is performed into an
identical state of the 3d subshell as from which is hopped
(i.e., every lattice point possesses one state into which
can be hopped, where the state can be occupied by two
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(a)

(b)

FIG. 13: In the undoped configuration (a) a hop leads to an
energetically more expensive redistribution of the electrons,
whereas in the doped configuration (b) it leads to an energet-
ically equivalent redistribution.

0S

d10

1/2

d9

0

d10

1/2

d9

0S

d10

1/2

d9

0

d10

1/2

d9

(a)

(b)

FIG. 14: A hop of an electron in the direction α90◦ (a) and
α45◦ (b). The electron is marked with an ellipse.

electrons of opposite spin). First, hops of electrons in the
direction α90◦ are examined [see Fig. 14(a)]. Since the
state into which the electron is allowed to hop is occu-
pied, it has to flip its spin. To conserve the total spin,
another electron has to flip its spin too. This is achieved
by flipping the spin of an electron of the lattice point
from which is hopped. Since the energetically highest ly-
ing state must be the one which is only occupied by one

1S 1/2 13/2

1S

d8

1/2

d9

1

d8

1/2

d9

d8s0 d9s0 d8s0d8s1

(a)

(b)

FIG. 15: A hop of a hole in the direction α90◦ (a) and α45◦

(b). The hole is marked with an ellipse.

electron, its spin-flip costs the least energy and is taken.
However, the spin-flip costs energy because now one mag-
netic moment is aligned ferromagnetically in contrast to
the favored antiferromagnetic alignment. These costs are
called Ξ 1

2
. Second, hops of electrons in the direction α45◦

are examined [see Fig. 14(b)]. Since there exists an un-
occupied state into which the electron may hop, the hop
costs no energy. Third, hops of holes in the direction
α90◦ are examined [see Fig. 15(a)]. In this case, there
exists a completely unoccupied state into which the hole
may hop. Since the hop which leads to S = 0 is expected
to be not possible due to the large costs of creating such
a configuration, it is forbidden. Thus, the hole hops so
that the electronic configuration remains the same with
S = 1. This kind of hop requires that the total spin of
the lattice point from which is hopped becomes S = 3/2,
which is assigned to [Ar]3d84s1. The costs of increasing
the spin are called Ξ 3

2
. Fourth, hops of holes in the di-

rection α45◦ are examined [see Fig. 15(b)]. Since there
exists an unoccupied state into which the hole may hop,
the hop costs no energy. In Fig. 16 the movement based
on the new model is illustrated. Before continuing with
the derivation of t(E), some remarks about the states
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(a)

(b)

FIG. 16: Movement of an electron (a) and a hole (b) in the
directions α = 0◦, α = 45◦, and α = 21.8◦. The charge carrier
is moving through a perfect antiferromagnetic lattice, where
each hop in the direction α90◦ leaves behind an excited state.

of the electrons are made. Up to now, the treatment
was carried out by using the states of an isolated copper
ion. In the undoped configuration this seems reasonable
because no hopping takes place which is seen to be con-
nected with an overlap of wave functions and thereby
with a modification from the states of an isolated cop-
per ion. Because of this and Ξ 1

2
,Ξ 3

2
� 1 eV, it is also

expected that the quantities Ξ 1
2

and Ξ 3
2

are well-defined
energies. However, a modification occurs as soon as elec-
trons hop. Then, an overlap takes place which leads to
that the well-defined energy levels turn into, effectively,
a continuum of energy levels, i.e., an energy band. In
the undoped configuration this case arises at excitation
energies of the order of 1 eV and is thus not considered.
In the doped configuration, though, a charge carrier is
able to hop freely in the direction α45◦ and at excita-
tion energies of the order of Ξ 1

2
,Ξ 3

2
in the direction α90◦ .

This is why electrons and holes are treated by an energy
band.11 Furthermore, I note that the energy barriers for
hops should be reflected in the band structure in form of

an isotropic energy gap of the order of 1 eV for electrons
in the undoped, and of an anisotropic one vanishing in
the direction α45◦ and having its maximum value of the
order of Ξ 1

2
,Ξ 3

2
in the direction α90◦ for charge carriers in

the doped configuration. Now, all preparations are made
and we return to t(E). At first, it is assumed that the
change of the direction of propagation ∆α during a relax-
ation process is small, ∆α� 45◦, and can be neglected.
This is supported by the expression

∆α = arctan
pv
pg

= arctan
pv
pF
, (31)

which is obtained for γ = 90◦ (cf. Fig. 2) and by
identifying pg with the Fermi momentum pF , and which
becomes small because of the expected largeness of pF .
To begin with, the relaxation length l(E) is determined
in the direction α90◦ . Since each hop costs the energy
Ξx, where x = 1/2 for electrons and x = 3/2 for holes,
l is estimated with the argument that a charge carrier
performs approximately E/Ξx hops until the excitation
energy E is lost, where each hop moves it forward the
distance of a lattice constant a, which yields

l90◦(E) =
a

Ξx
E, (32)

i.e., expression (3) is used with tνs = l90◦/a, N̄ = 1,
and Ē = Ξx. Next, (32) is extended to all directions
of propagation by multiplying it by l′/l90◦ , where l′ is
the total traveled path. In Fig. 17 the corresponding
geometric configuration is shown. As can be seen l′ can

α

45°−α

45°
d

l
90°

l
1

l
2

’
I’

’

FIG. 17: Configuration from which the angle dependence of
the relaxation length is obtained.

be written as

l′ = l′1 + l′2 =
d

tanα
+

d

tan(45◦ − α)
, (33)

and d as

d = l90◦ sinα. (34)

Then, by combining (33) and (34), one gets

l′

l90◦
= cosα+

sinα
tan(45◦ − α)

. (35)
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And, multiplying (32) by (35) yields

l′(E) =
a

Ξx

[
cosα+

sinα
tan(45◦ − α)

]
E, (36)

where (36) holds for 0◦ ≤ α ≤ 45◦ and can be extended
to all angles because of symmetrical reasons. Now, t′(E)
is obtained from l′(E) by l′ = v̄t′, where v̄ is identified
with the Fermi velocity vF because of its expected large-
ness so that the second term in (16) can be neglected.
And it is assumed that vF is independent of α. Then, the
excitation-energy-dependent relaxation time becomes

t′(E) =
a

ΞxvF

[
cosα+

sinα
tan(45◦ − α)

]
E, (37)

and equating (1) and (37) yields

E′0 =

√
2~ΞxvF

a

[
cosα+

sinα
tan(45◦ − α)

]− 1
2

(38)

for the virtual energy a charge carrier takes on. Up to
now, the derivation was carried out in a single-particle
picture. This seems reasonable in respect to scattering
between charge carriers because it is expected to be neg-
ligible, in analogy to electron-electron scattering in nor-
mal metals. However, one phenomenon is expected to
influence relaxation processes, namely, the presence of
conjured up virtual particles, where it is seen to be: Ev-
ery conjured up virtual particle is located to one lattice
point. And, if at one or both lattice points participat-
ing in a hop a virtual particle is located, the hop costs
no energy. This is explained by the argument that there
emerges an unoccupied state into which the charge car-
rier may hop without costs. Thus, a hop in the direction
α90◦ costs only Ξx if at both lattice points no conjured
up virtual particle is located, whereas a hop in the direc-
tion α45◦ is not effected since it already costs no energy.
In Fig. 18 the thoughts are illustrated. In the next step,
the number of virtual particles for a given number of
charge carriers (for a given doping level) is determined.
The interplay between conjuring up of virtual particles
and their influence on relaxation processes is assumed to
work as follows: Every charge carrier behaves in respect
to conjuring up as it would as a single charge carrier.
This means that, if X is the number of charge carriers
and N̄ of virtual particles a single charge carrier conjures
up on average, the number of virtual particles becomes
N̄X. Now, charge carriers are moving through an anti-
ferromagnetic lattice with N̄X excited lattice points. In
the new configuration a hop in the direction α90◦ costs
only Ξx if two lattice points are in a ground state. The
probability of finding two is

Pgg = (1− N̄x)2, (39)

ground excited groundexcited

(a)

ground excited groundexcited

excited

excited

excited

excited

(b)

FIG. 18: If one or both lattice points participating in a hop
in the direction α90◦ are excited, there emerges an unoccu-
pied state into which an electron (a) and a hole (b) may hop
without costs.

where x is the number of charge carriers per lattice
point and 1 − N̄x the probability of finding one ground
state. In Appendix A the influence is examined and the
result that (37) has to be multiplied by P−1

gg is obtained.
Next, N̄ is calculated. The number of virtual particles
a charge carrier conjures up is N = E′0/Ξx, where E′0 is
given by (38). If all directions of propagation are treated
equally, N̄ may be obtained by averaging over α,

N̄ =
4
π

∫ π
4

0

Ndα =
4
π

∫ π
4

0

E′0
Ξx
dα

=
4
π

∫ π
4

0

[
cosα+

sinα
tan(π4 − α)

]− 1
2

dα

×
√

2~vF
Ξxa

(40)

≈ 0.69
√

2~vF
Ξxa

. (41)

Therefore, the final excitation-energy-dependent relax-
ation time for charge carriers in the CuO2 plane becomes



14

t(E) =
a

ΞxvF

[
cosα+

sinα
tan(45◦ − α)

]
E

(1− N̄x)2
, (42)

where t(E) =∞ for 1− N̄x < 0 when all lattice points
are excited. Function (42) was derived for charge car-
riers relaxing due to scattering on electronic excitations
in form of bringing a valence electron of a copper ion in
an energetically higher lying state, i.e., electron-electron
and hole-electron scattering is responsible for relaxation
processes. It is assumed that this scattering dominates
as it was that in normal metals electron-phonon scatter-
ing does. Furthermore, the final virtual energy a charge
carrier in the CuO2 plane takes on becomes

E0 =

√
2~ΞxvF

a

[
cosα+

sinα
tan(45◦ − α)

]− 1
2

×(1− N̄x). (43)

Temperature dependences are not examined. Thus,
the presented views are a proposal how the movement of
charge carriers can be described. However, of course, the
qualitative behavior that Ev decreases with increasing T
and vanishes for T > T0 is expected.

V. APPLICATION TO SUPERCONDUCTIVITY
(PART TWO)

The second part deals with all major observed phenom-
ena connected with superconductivity and how they can
be explained with the new concept, where it turns out
that certain views on how to interpret the experiments
are different from the present. In addition, it predicts
phenomena neither observed nor predicted so far.

A. Superconducting interaction

The basis which determines the behavior of particles is
the interaction between them. When examining charge
carriers (electrons and holes) in a solid, their behavior
was described with the electromagnetic interaction. Now,
the situation changes because the postulate predicts that
another interaction, which is called “superconducting,”
emerges under a certain condition.12 In the following,
the behavior is examined by means of the concepts of
Sec. III.

Firstly, it is assumed that only two electrons (holes)
interact with each other by exchanging energies and
momenta.13 After the exchange, though, both electrons
may interact with other electrons. Secondly, it is as-
sumed that an attractive interaction acts between them
(cf. Fig. 8). Furthermore, electrons are treated with
the ideal-Fermi-gas model, where the dispersion relation
is given by E = p2/2m in which m is the free electron

mass and all states with E ≤ EF at T = 0 K are occu-
pied. Since excitation energies are measured in respect
to the Fermi energy EF and the lowest lying unoccu-
pied states lie at EF , these states are identified with the
ground states, Eg = EF , pg = pF , and vg = vF . Then,
Eq. (7) becomes

Ev =
1

2m
(2pF pv cos γ + p2

v). (44)

Next, I work through the three rules on page 7. First,
Rule I is examined. It is concerned with the conserva-
tion laws which require that the energy of the interacting
electrons a and b before the exchange

Ev = Eav + Ebv

=
1

2m
[
2paF p

a
v cos γa + (pav)2

]
+

1
2m

[
2pbF p

b
v cos γb + (pbv)

2
]

(45)

and after it

E′v = Eav
′ + Ebv

′

=
1

2m
[
2paF p

b
v cos γa′ + (pbv)

2
]

+
1

2m

[
2pbF p

a
v cos γb

′
+ (pav)2

]
(46)

equal each other. Hence, because the momentum of the
ground state is the same for all electrons, paF = pbF = pF ,
equating (45) and (46) yields

pav cos γa + pbv cos γb = pbv cos γa′ + pav cos γb
′
. (47)

Second, Rule II requires that pav ‖ pbv which implies
that either γa′ = γa and γb′ = γb or γa′ = 180◦+γa and
γb
′ = 180◦ + γb, as one can make oneself clear from Fig.

2. The case that γa′ = γa and γb′ = γb is not considered
because it is assumed that the interaction dominates for
electrons whose virtual momenta pav and pbv as well as
whose momenta of the ground state paF and pbF show in
the opposite direction. Thus we have γa′ = 180◦+γa and
γb
′ = 180◦+γb which implies that cos γa = − cos γa′ and

cos γb = − cos γb′, and (47) becomes

(pav + pbv) cos γa + (pav + pbv) cos γb = 0
cos γa + cos γb = 0, (48)

which can only be fulfilled for γa = γb = 90◦, i.e.,
cos γa = cos γb = 0, if the assumption that 0◦ ≤ γa, γb ≤
90◦ is made. In Fig. 19 the interaction is illustrated.
Hence, we have pav/p

a
v = −pbv/p

b
v, paF /p

a
F = −pbF /p

b
F ,

γ = 90◦, and pav ⊥ paF , pbv ⊥ pbF . Now, with the aid of
(7), (12), and (13) plus cos γ = 0, one obtains
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t = -t
v

t = 0

t = t
v

FIG. 19: Superconducting interaction between two electrons
in an antiferromagnetic lattice. Every electron first performs
a virtual relaxation process and, thereafter, an inverse one.
Hence, it first excites magnetic moments by flipping them and,
thereafter, it brings magnetic moments excited by a second
electron back in their ground states by flipping them again.

∆v =
1

2m
π2
v =

1
2
mν2

v (49)

=
1

8m
p2
v =

1
4
Ev, (50)

and conditions (1) and (2) become

∆vτv =
~
2
, (51)

πvξv = ~, (52)

and the quantities concerning space become

ξv =
~√

2m∆v

, (53)

λv =
~vF
2∆v

, (54)

where it is assumed that v̄ = vF in (16). It should be
noted that the strength of the interaction is independent

of the distance between the electrons. And that there
exists a permanent bond between two electrons which is
in contrast to the picture developed so far in which elec-
trons constantly interact with other electrons. The bond
has the appearance: By performing a virtual relaxation
process an electron changes its direction of propagation
by

∆α = arctan
2νv
vF

= arctan

√
8∆v/m

vF
, (55)

where ∆v = mν2
v/2, as one can make oneself clear from

Figs. 2 and 6. Thus, by performing N = 360◦/∆α relax-
ation processes it changes it by 360◦ and moves through
one orbit. Since two electrons moving on the opposite
side of such an orbit fulfill all rules for the interaction,
they build a permanent bond. In Fig. 20 this configura-
tion is illustrated. To estimate the distance between the

p
F

p
F

p
v

p
v

p
F

p
v

p
F

p
v

r

FIG. 20: Configuration in which two electrons exhibit a per-
manent bond for pav = pbv = pv = paF = pbF = pF and γ = 90◦.

electrons, the orbit is approximated to a circular orbit
with the radius r. Since each relaxation process moves
the electron forward the distance λv given by (54), one
gets

2πr = Nλv =
360◦

∆α
λv, (56)

which can be rearranged to

r =
1

2π
360◦

∆α
~vF
2∆v

. (57)

In Table III the radius for different normal metals is
calculated. As can be seen the radius takes on large
values which could be the reason why the bonds have
not come to attention yet. Furthermore, because of the
higher complexity of virtual processes in the antiferro-
magnetic lattice, these bonds are not investigated. Third,
Rule III is examined. It says that ∆0 can be calculated
by

∆0 =
1
4
E0W, (58)

where (50) is used and W is the probability of finding
two points which exhibit no conjured up virtual particle
and at which a virtual particle can thus be created or
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TABLE III: Change of the direction of propagation ∆α
through a relaxation process given by (55) and the radius r
of the bond given by (57) for ∆v(T = 0 K) = ∆0 = 3kBΥ0/2.

Experimenta Theory
Normal Υ0 vF ∆α r
metal (K) (106 ms−1) (◦) (10−3 m)

Cd 0.56 1.62 0.36 1.18
Zn 0.875 1.83 0.39 0.77
Ga 1.091 1.92 0.42 0.61
Al 1.196 2.03 0.42 0.59
Tl 2.39 1.69 0.71 0.15
In 3.4 1.74 0.82 0.09
Sn 3.72 1.9 0.78 0.09
Hg 4.15 1.58 1 0.06
Pb 7.19 1.83 1.13 0.03

aN. W. Ashcroft and D. N. Mermin, Festkörperphysik (Olden-
bourg, München, 2007).

annihilated.14 Hence, W takes on values 0 ≤W ≤ 1. To
begin with, with the normal metals is dealt. Then, (58)
can be written with (23) and (24) as

Υ0 =
1
4

(
kBA

165~

) 1
4

WΘ
5
4 , (59)

∆0 =
3
8
kB

(
kBA

165~

) 1
4

WΘ
5
4 . (60)

Furthermore, it is assumed that the quantities A and
W are independent of the mass M of a lattice ion
which means that (59) predicts closely the isotope ef-
fect Υ0 ∝ Θ ∝ M−1/2 observed in normal metals. Now,
the magnitude of W is estimated which is carried out by
means of the expressions (3), (21), and (25) which all
describe the relaxation time. Unfortunately, about the
relaxation time and which features of it determine its
magnitude and thereby the magnitude of the electrical
resistivity is no statement made in the literature, e.g.,
which is the role of the Debye temperature Θ? A cir-
cumstance that indicates that Θ does not determine the
magnitude, i.e., Θ ≈ const for all normal metals, is that
one observes that a large resistivity is connected with
a large value of Υ0 which is in contrast to the picture
that it is small for large values of Θ. This is why it is
assumed that Θ ≈ const.15 Now, I assume that N̄ = 1
and Ē ∝ T 6/Θ5 which converts function (3) into (21).
Hence, it is assumed that the temperature dependence
of the relaxation time results from the temperature de-
pendence of Ē and that their different magnitudes result
from different scattering frequencies νs. And, because it
is thought that νs is proportional to W , combining (3)
and (25) yields

W = Cρn, (61)

where C is a constant fitted to the experiment and is

TABLE IV: Experimental values of Υ0, ρ, and n plus theo-
retical of Υ0 given by (62).

Experimenta Theoryb

Normal Υ0 ρ n T0 Υ0

metal (K) (10−8 Ωm) (1028 m−3) (K) (K)
Cd 0.56 1.6 9.27 50 2
Zn 0.875 1.1 13.2 51 2
Ga 1.091 2.75 15.4 39 5
Al 1.196 0.3 18.1 65 1
Tl 2.39 3.7 10.5 40 5
In 3.4 1.8 11.5 46 3
Sn 3.72 2.1 14.8 42 4
Hg 4.15 5.8 8.65 37 6
Pb 7.19 4.7 13.2 35 7

aN. W. Ashcroft and D. N. Mermin, Festkörperphysik (Olden-
bourg, München, 2007).
bValues of T0 are taken from Table II.

chosen to be C = 1.3 × 10−22 Ω−1m2. Then, inserting
(61) into (59) and using (23) yields

Υ0 =
1
4
T0Cρn. (62)

In Table IV experimental are compared with theoret-
ical values of Υ0. As can be seen both values are in
acceptable agreement. For the antiferromagnetic lattice,
W is identified with the probability of finding two hops in
the direction α90◦ which cost no energy. The probability
of finding one such hop is 1− Pgg, where Pgg is given by
(39), because with the probability Pgg a virtual particle
is conjured up, and W becomes

W = (1− Pgg)2 (63)

=
[
1− (1− N̄x)2

]2
= (2N̄x− N̄2x2)2. (64)

And, by combining (43), (50), (58), and (64), one gets

∆0 =

√
~ΞxvF

8a

[
cosα+

sinα
tan(45◦ − α)

]− 1
2

×(1− N̄x)(2N̄x− N̄2x2)2. (65)

In expression (65) all information to ∆0 can be found.
Unfortunately, I did not find values for Ξx and vF ,
whereas the lattice constant a is well-known, which
makes it impossible to predict precise values for ∆0 and
E0. Nevertheless, the orders of magnitude can be esti-
mated: Because Ξx reflects the strength of the antifer-
romagnetic coupling, it is chosen to be Ξx ≈ 100 meV.
Furthermore, it is chosen that vF ≈ 106 ms−1 and a ≈
5 × 10−10 m. Then, with (43) and T0 ≈ E0/5kB ,16 one
has

Emax = E0(α = 0◦, x = 0) ≈ 500 meV, (66)
Tmax = T0(α = 0◦, x = 0) ≈ 1000 K, (67)
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and for N̄ given by (41)

N̄ ≈ 3.5. (68)

In addition, with (65) and Υ0 ≈ ∆0/5kB plus knowing
that ∆max is achieved at x ≈ 0.55/N̄ ≈ 0.16 determined
by ∂∆0/∂x = 0, one has

∆max = ∆0(α = 0◦, x = 0.16) ≈ 50 meV, (69)
Υmax = Υ0(α = 0◦, x = 0.16) ≈ 100 K, (70)

which is the order of magnitude expected from the ex-
periment. For a constant doping level, (65) may be ex-
pressed as

∆0

∆max
=
[
cosα+

sinα
tan(45◦ − α)

]− 1
2

, (71)

where ∆0(α = 0◦) = ∆max, to obtain the angle de-
pendence. In Fig. 21 function (71) is compared with the
experiment. Furthermore, with (43) and (65), one gets
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FIG. 21: Binding energy ∆0 to its value ∆max at α = 0◦ vs α.
The theoretical curve is given by (71) and the experimental
by ∆0/∆max = cos(2α).

∆0 =
1
4
E0(2N̄x− N̄2x2)2 (72)

for the doping dependence. In Fig. 22 the doping
dependences of ∆0 and E0 are depicted. The diagram
exhibits both central features of a phase diagram of an
electron system in an antiferromagnetic lattice, firstly,
an increasing formation of a superconducting state with
increasing the doping level until a maximum value is
reached after which it decreases and vanishes and, sec-
ondly, the emergence of a second state which is well-
developed at low doping levels.17 The second state is in
the investigations made so far called with the expression
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FIG. 22: Phase diagram of the electron system in an antifer-
romagnetic lattice. Against the x-axis the doping level x to
its value xc at ∆0 = E0 = 0 given by xc = 1/N̄ is plotted.
Against the y-axis the excitation energy E to its value Emax
at x = 0 in (43) is plotted. The superconducting state is en-
closed by (72), where for illustrative reasons it is multiplied
by 4. The state in which the excitation energy takes on the
constant value E0, which is called “virtual,” is enclosed by
(43). The remaining part consists of the normal state.

“pseudogap.” Hence, the proposal for the nature of the
pseudogap is that it describes that in certain systems at
temperatures Υ0 < T < T0 a particle takes on the con-
stant excitation energy E0 instead of that its excitation
energy E decreases with decreasing T . And, this state is
called the “virtual” state. Next, the temperature depen-
dences are examined. The new concept predicts no new
effects for T > T0. For Υ0 < T < T0, it predicts that
electrons take on the constant excitation energy E0, i.e.,
the constant temperature T0. And, for T < Υ0, they are
in a superconducting state in which they interact with
each other. For the temperature-dependent virtual ener-
gies we have by means of (27) and (28)

Ev = E0 − Et = E0

[
1− Pt

P0

]
, (73)

∆v = ∆0 −∆t = ∆0

[
1− Pt

P0

]
, (74)

where Pt is the probability for thermal and P0 for vir-
tual scattering. Then, an expression analog to (29) is
formulated

∆v

∆0
=

[
1−

(
T

Υ0

)5
]

(75)

for the normal metals.18 In Fig. 23 function (75) is
compared with the experiment. As can be seen both
functions are in good agreement. The expected tempera-
ture dependence of the virtual momenta is illustrated in
Fig. 24 and is discussed in the following. To begin with,
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FIG. 23: Binding energy ∆v to its value ∆0 at T = 0 K
vs T/Υ0 for normal metals. The theoretical curve is given by

(75) and the experimental by ∆v/∆0 = {cos[90◦(T/Υ0)2]}1/2.
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FIG. 24: Temperature dependence of the virtual momenta for
γ = 90◦.

expressions analog to (73) and (74) are formulated

pv = p0 − pt, (76)
πv = π0 − πt. (77)

Furthermore, the thermal momenta pt are treated in
the same way as the negative virtual were treated which
implies that

Et =
1

2m
p2
t , (78)

and by taking the scalar form of (76) and (77) plus
using (73), (74), E0 = p2

0/2m, and ∆0 = π2
0/2m, one

obtains

pv =
√

2mE0

[
1−

√
Pt
P0

]
, (79)

πv =
√

2m∆0

[
1−

√
Pt
P0

]
. (80)

And, with the aid of (75), the negative virtual momen-
tum for normal metals becomes

πv =
√

2m∆0

[
1−

(
T

Υ0

) 5
2
]
. (81)

As a conclusion all insights are summarized in Fig. 25.
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FIG. 25: Excitation energy E of an electron to its minimum
excitation energy E0 vs T/T0 for E0/∆0 = T0/Υ0 = 5. In
the superconducting state (a), electrons possess the energy
E0 − ∆v and interact with the strength ∆v. In the virtual
state (b), they possess the constant excitation energy E0. In
the normal state (c), no new effects are predicted, i.e., E
increases with increasing T .

At last, I make one remark. In the treatment made
the repulsive Coulomb interaction

FC =
1

4πε0
e2

r2
(82)

between electrons is not taken into account. Thus,
to my mind, it can be neglected which is in contrast to
the picture developed so far in which it makes a con-
siderable counterpart to the attractive superconducting
interaction. Its neglecting is attributable to the neglect-
ing of electron-electron interactions in the derivation of
the excitation-energy-dependent relaxation time, e.g., in
normal metals they are neglected compared to electron-
phonon interactions. Besides, it seems strange that, on
the one hand, in the relaxation time electron-electron are
negligible compared to electron-phonon interactions and,
on the other hand, in a superconductor they are not.

B. Perfect conductivity

Perfect conductivity is the hallmark of superconduc-
tivity. Its observation led to the realization that systems
may exhibit a superconducting state and after it super-
conductivity was named. Therefore, a theory of super-
conductivity must contain an explanation for it. Unfor-
tunately, this subject is much disregarded which shows
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itself in the circumstance that there does not exist one
common explanation, where in many works to supercon-
ductivity the subject is not even treated. This is an un-
satisfactory and sad situation which, to my mind, reflects
that the heart of superconductivity is still not revealed.
In the following, I present an explanation which hopefully
sheds light on it.

A requirement to understand superconductivity is seen
to be to understand the electrical resistivity, which is in
the Drude model described by the formula

ρ =
m

ne2t
, (83)

where m is the mass and e the charge of an electron, n
is the density of electrons, and t the relaxation time. Be-
cause the quantities m, e, and n take on constant values,
the relaxation time t is used to explain the perfect con-
ductivity, i.e., the vanishing of the resistivity, ρ = 0. This
work says that the relaxation time describes the period
of time in which an electron loses its excitation energy
E, which results from all mechanisms responsible for a
gain of energy, e.g., the thermal energy and the electric
energy due to an applied electric field. Thus, because an
electron exhibits the energy E, it experiences processes
responsible for a loss of electric energy, i.e., a decrease of
the electric current and a finite resistivity. However, in
the superconducting state, the resistivity vanishes which
is explained as follows: Up to now, we talked about real
relaxation processes. But in the superconducting state
virtual relaxation processes must also be taken into ac-
count. The point I use to explain perfect conductivity
is that the interaction takes place in the form that, first,
a virtual and, thereafter, an inverse relaxation process is
performed. Within the inverse all within the virtual re-
laxation process created particles have to be annihilated
in inverse order so that the electron goes though a series
of allowed states. This holds also for created real par-
ticles. But since they are in general not in the position
to be annihilated, a difficulty opens up which is circum-
vented by assuming that no real particles can be created
within a virtual relaxation process. Therefore, one gets
that an electron is only able to perform either virtual or
real relaxation processes. In the superconducting state,
only virtual and no real relaxation processes are per-
formed which implies that the real relaxation time goes
to infinity and the electrical resistivity vanishes. Hence,
perfect conductivity becomes a condition that the super-
conducting interaction can take place.

At last, I draw the attention to the fact that the re-
laxation time is interpreted differently as it was so far.
Following from this, in Appendix B new insights to the
electrical resistivity are presented, such as, an explana-
tion for Ohm’s law and a new limit for its range of valid-
ity.

C. Energy gap

Another feature of superconductivity is the emergence
of an energy gap. It describes the gap between the en-
ergy levels occupied by electrons (holes) in the bond and
the energy levels reached by electrons (holes) by exciting
them. The interaction leading to the bond is described
by relaxation processes in which electrons give off the
energy ∆v. Thus, 2∆v is interpreted as the energy re-
quired to break up the bond between two electrons and
∆v becomes an energy gap. Furthermore, because of
the similarities between virtual and thermal processes,
the occupation probabilities of states at a given virtual
energy are expected to be equal to the ones at the corre-
sponding thermal energy. In Fig. 26 these considerations
are depicted. In the picture of virtual processes one can
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FIG. 26: Energy of an electron for different temperature
ranges in the picture developed within this work (•) and in the
picture developed so far (◦). The energy of the ground state
is the Fermi energy EF and states with E ≤ EF are occupied.
For T < Υ0, there is the difference that ∆v is measured in
respect to EF + E0 and to EF + E. For Υ0 < T < T0, the
picture developed within this work predicts that the electron
takes on a constant excitation energy E0, whereas the picture
developed so far predicts no deviations from the normal state,
i.e., the excitation energy E increases with increasing T . For
T > T0, both pictures coincide.

explain the energy gap also by the argument that in or-
der to break up the bond the energy 2∆v must be put
in form of created real particles into the solid so that
the virtual scattering probability becomes zero. Then,
electrons no longer interact with each other via virtual
relaxation processes and move independently.

Next, I deal with how the relationship between the
virtual energies (Ev,∆v) and the virtual temperatures
(Tv,Υv) looks like. From my point of view, it is given by
the relationship between the excitation energy E and the
temperature T , i.e.,19

Ev
Tv

=
∆v

Υv
=
E

T
. (84)

In classical physics the relating of T and E was exam-
ined and the equipartition relation was obtained
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E =
f

2
kBT, (85)

E

T
=

f

2
kB , (86)

where f is the number of the degrees of freedom of a
particle. In case that the quantum nature of the states
can be neglected (i.e., the quantum number n becomes
n� 1), relation (86) holds also in quantum physics. The
range of validity is estimated by Eq. (44) in which Ev is
replaced by ∆E and pv by ∆p, where ∆E and ∆p shall
characterize the quantum nature concerning energy and
momentum,

∆E =
1

2m
(2pF∆p cos γ + ∆p2). (87)

Then ∆p is chosen to be

∆p = ~∆k = ~
2π
L
, (88)

where ∆k describes the distance in k-space between
nearest-neighbor states and L is thus the size of the sam-
ple. Therefore, ∆E becomes the energy difference be-
tween nearest-neighbor states. Now, the equipartition
relation holds if ∆E is small compared to E, ∆E � E.
In normal metals, typical values are L ≈ 1 mm and
pF = mvF ≈ 10−24 kgms−1. Then, with (86), (87), and
(88), plus ∆p� pF and cos γ ≈ 1, one obtains

∆E ≈ pF∆p
m

≈ 10−6 eV, (89)

∆T ≈ ∆E
kB
≈ 0.01 K. (90)

Hence, for T � 0.01 K, the equipartition relation
holds. And, for a free particle, as it is an electron in
the free-electron-gas model, one gets three translational
degrees of freedom f = 3 which implies that (84) becomes

Ev
Tv

=
∆v

Υv
=
E

T
=

3
2
kB = 1.5kB . (91)

This differs from the prediction

∆v

Υv
(T = 0 K) =

∆0

Υ0
= 1.764kB (92)

of the BCS theory.2 However, it is noted that within
this work (91) fits the experiment better than (92). Fur-
thermore, there exists the case that ∆E reaches and ex-
ceeds E, ∆E & E, where (86) no longer holds. How
the relationship between T and E looks like if the quan-
tum nature must be taken into account is not exam-
ined in detail yet. However, with the results obtained

from such examinations, one obtains predictions for (84)
which can be compared with the experiment to check my
point of view. For normal metals, ∆E was estimated
to be ∆E ≈ 10−6 eV (∆T ≈ 0.01 K) for sample sizes
L ≈ 1 mm. If L is reduced to L� 1 mm, though, a devi-
ation of (84) from 1.5kB appears at higher temperatures.
Actually, the two-dimensional CuO2 plane is a system in
which the equipartition relation should not be valid be-
cause the third dimension is only of the order of a lattice
constant, L ≈ 1 nm � 1 mm. This behavior is already
observed in cuprate superconductors20 in which ∆0/Υ0

is bigger than 1.5kB . Furthermore, if point of view (84)
is true, a new approach to describe (cuprate) supercon-
ductors opens up. E.g., it is conceivable that different
values of Υ0 for similar values of ∆0 can be explained by
different relations (84). By that the phenomenon that Υ0

depends on the number of CuO2 planes in the unit cell
could be explained if hopping between CuO2 planes is as-
sumed to determine the movement in the third dimension
which determines L and ∆E, and thereby relation (84).
At last, I note that there is a contrast between the picture
developed within this work and the picture developed so
far in respect to the answer to the question how ∆0/Υ0

is expected to look like for large values of Υ0. Whereas
in the picture developed so far a large value of ∆0/Υ0 is
connected with a strong-coupling superconductor with a
large value of Υ0, the picture developed within this work
predicts that, for a given value ∆0, ∆0/Υ0 should possess
a small value in order that Υ0 becomes large.

D. Specific heat

In this subsection the specific heat (capacity) c is ex-
amined. At first, it is assumed that only the contribu-
tion ce of the electrons has to be newly calculated which
is done in the following for the normal metals. Further-
more, because electrons (holes) in the antiferromagnetic
lattice exhibit more complex virtual energies, this deter-
mination is not carried out. Nevertheless, on the basis
of the results for the normal metals, general predictions
can be made.

To begin with, the internal energy U of the electron
system is determined. Because the virtual temperatures
Υv and Tv and the temperature T are treated in a related
way, it is first written as

U =
π2

6
D(EF )(kBT )2, (93)

where D(EF ) is the density of states at the Fermi
energy.21 For T > T0, the postulate predicts no new ef-
fects. For Υ0 < T < T0, electrons take on the constant
temperature T0 which implies that the internal energy
takes on the constant value

U =
π2

6
D(EF )(kBT0)2. (94)
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And, for T < Υ0, they take on additionally a negative
virtual temperature which is taken into account as follows

U =
π2

6
D(EF )(kBT0)2 − π2

6
D(EF )(kBΥv)2

=
π2

6
D(EF )k2

B(T 2
0 −Υ2

v), (95)

where the temperature-dependent virtual temperature
is obtained with (75) and (91)

Υv = Υ0

[
1−

(
T

Υ0

)5
]
. (96)

In Fig. 27 the considerations made are depicted. Now,
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FIG. 27: Internal energy U of the electron system in a super-
conductor to its value U0 given by (94) vs T/T0 for T0/Υ0 = 5.
For T < Υ0, U is given by (95). For Υ0 < T < T0, U is given
by (94). For T > T0, U is given by (93). The dashed lines
represent the normal state given by (93) and the picture de-
veloped so far in which Υv is measured in respect to (93).

to get a new perspective, the internal energy (95) is re-
expressed with the aid of (91)

U =
2π2

27
D(EF )(E2

0 −∆2
v), (97)

where the second term

Ucond = −2π2

27
D(EF )∆2

v (98)

≈ −0.73D(EF )∆2
v (99)

describes the energy given off by the electron system
and is interpreted as a condensation energy. And, it is
noted that (98) is similar to the expression

Ucond = −1
4
D(EF )∆2

0 (100)

predicted by the BCS theory2 for the condensation en-
ergy at T = 0 K. Next, to obtain the specific heat ce in
a normal metal, U is differentiated with respect to T ,

c =
∂

∂T
U. (101)

This yields for T > T0 and U given by (93)

ce =
π2

3
D(EF )k2

BT, (102)

for Υ0 < T < T0 and U given by (94)

ce = 0, (103)

and for T < Υ0, U given by (95) and Υv by (96)

ce = −π
2

6
D(EF )k2

B

∂

∂T
Υ2
v

= −π
2

3
D(EF )k2

BΥv
∂

∂T
Υv

=
π2

3
D(EF )k2

BΥ0

×5

[(
T

Υ0

)4

−
(
T

Υ0

)9
]
. (104)

In Fig. 28 the temperature-dependent electronic spe-
cific heat is shown. As the reader may have noticed, there
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FIG. 28: Specific heat ce of the electron system in a super-
conductor to the value c0 given by (102) at T = T0 vs T/T0

for T0/Υ0 = 5 (cf. Fig. 27). For T < Υ0, ce is given by (104).
For Υ0 < T < T0, ce is given by (103). For T > T0, ce is
given by (102). The dashed line represents the normal state
(102).

appear differences between these results and the behav-
ior expected from the picture developed so far. At first,
it should be said that it is challenging to determine ce(T )
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experimentally because the contribution of the electrons
is in general small compared to others, e.g., the specific
heat of phonons. This is why ce(T ) may still be in part
unknown and new predictions may still turn out to be
true. Now, the differences are discussed. Firstly, for
Υ0 < T < T0, the postulate predicts the virtual state
in which the internal energy takes on a constant value,
ce = ∂U/∂T = 0, whereas the picture developed so far
predicts no deviations from the normal state. Also, at
T = T0, a discontinuity occurs in form of a jump from
ce = 0 to ce = π2D(EF )k2

BT0/3. Secondly, I discuss the
temperature range T < Υ0 which is additionally shown
in Fig. 29. For small temperatures the contribution of
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FIG. 29: Specific heat ce of the electron system in a super-
conductor given by (104) to the value cγ given by (102) at
T = Υ0 vs T/Υ0. The experimental curve is given by22

ce/cγ = 9.1 exp(−1.5Υ0/T ).

the electrons is expected to become less small compared
to others which makes it easier to determine ce(T ). Such
examinations showed that for T � Υ0 it takes on the
form

ce
cγ

= ae−b
Υ0
T , (105)

where cγ is (102) at T = Υ0 [cγ = π2D(EF )k2
BΥ0/3],

and a and b are numerical constants. Experiments by
Corak et al.22 produced a = 9.10 and b = 1.50. As can be
seen the experimental specific heat (105) is, in its range
of validity, in acceptable agreement with the theoretical
specific heat

ce
cγ

= 5

[(
T

Υ0

)4

−
(
T

Υ0

)9
]

(106)

obtained from (104). However, for T . Υ0, there ap-
pear bigger differences. In the picture developed so far
the specific heat in the superconducting state is expected
to show a qualitative behavior in form of function (105),

i.e., ce increases with increasing T and at T = Υ0 a dis-
continuity occurs in form of a jump to cγ . The picture de-
veloped within this work, again, predicts that ce given by
(106) increases with increasing T only for 0 < T < Tmax,
where at T = Tmax it takes on its maximum value and
thus Tmax can be calculated by

∂

∂T
ce = 0

4
(
Tmax
Υ0

)3

− 9
(
Tmax
Υ0

)8

= 0

4− 9
(
Tmax
Υ0

)5

= 0,

which yields

Tmax =
(

4
9

) 1
5

Υ0 (107)

≈ 0.85Υ0. (108)

And, for Tmax < T < Υ0, it decreases with increasing
T . To my mind, the reason for the difference near Υ0 is:
The experiment is not interpreted correctly. The mistake
is made that the rapid fall to zero between Tmax and Υ0

is interpreted as an instant jump. This work says though
that there exists a range in which ce shows a shoulder-like
behavior characterized by a decrease and that this range
is part of the superconducting state and no discontinuity
occurs at T = Υ0. As a conclusion to this paragraph, I
derive the BCS value 1.764kB . The BCS theory predicts
a specific heat in the qualitative form of function (105),
where in my opinion, the situation is: The value of Υ0

in the BCS theory ΥBCS
0 is not chosen to be Υ0 at which

the superconducting state sets in, but it is chosen to be a
lower value ΥBCS

0 < Υ0 so that a jump of ce at T = ΥBCS
0

is predicted. The obvious choice for ΥBCS
0 within this

work is Tmax given by (107)

ΥBCS
0 = Tmax =

(
4
9

) 1
5

Υ0. (109)

Now, with the aid of (91), we have

∆0

Υ0
=
(

4
9

) 1
5 ∆0

ΥBCS
0

=
3
2
kB , (110)

which implies that

∆0

ΥBCS
0

=
(

9
4

) 1
5 3

2
kB (111)

≈ 1.764kB , (112)

which is the BCS value (92). The excellent agreement
makes it hard to believe that the derivation is not jus-
tified. And, it supports the validity of (104) as well as
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the point of view that ∆0/Υ0 takes on the value 1.5kB
instead of 1.764kB .

At last, predictions about the electronic specific heat
in general are made. Firstly, electrons in a supercon-
ductor are expected to exhibit a virtual state in which
the specific heat vanishes and a discontinuity occurs at
T = T0. Secondly, in the superconducting state, the spe-
cific heat may possess a form with an increase and a de-
crease and in which no discontinuity occurs at T = Υ0,
which is in contrast to the picture developed so far in
which the discontinuity is seen to be an important fea-
ture. This shoulder-like behavior is already observed in
cuprate superconductors.23 However, in the picture de-
veloped so far the shoulder is seen to exist for T > Υ0,
whereas the picture developed within this work says that
it is part of the superconducting state.

E. Superconductor in a magnetic field

At last, I examine a superconductor in a magnetic
field B. Its presence means that electrons (holes) see,
in addition to the superconducting, a magnetic interac-
tion which is described by the Lorentz force

FL = e(v×B). (113)

In the following, it is assumed that the velocity v which
is identified with (16) can be set equal to the Fermi ve-
locity vF , vg = vF and vv � vF , and (113) becomes

FL = e(vF ×B). (114)

Next, the interplay between the superconducting and
the magnetic interaction is investigated. Hence, an ex-
pression for the superconducting force is formulated

Fs =
∆v

ξv
eξ =

πv
τv

eπ, (115)

where eξ is the unit vector in the direction of ξv and eπ
the one in the direction of πv. Its justification is found in
the perspective of relaxation processes. Because a force
describes the change of energy (momentum) in a certain
direction within a certain distance (within a certain pe-
riod of time), and because the energy ∆v (the momentum
πv) describes the mean change of energy (momentum) by
performing a virtual relaxation process in the direction
eξ = eπ within the distance ξv (within the period of time
τv), it seems obvious to formulate (115). Now, the to-
tal force acting on an electron in a superconductor in a
magnetic field becomes

F = Fs + FL

=
∆v

ξv
eξ + e(vF ×B). (116)

In the following investigation, the scalar form is taken

F =
∆v

ξv
+ evFB sinβ, (117)

where β is the angle between vF and B. In analogy to
the influence of the temperature, a magnetic field is ex-
pected to lead to additional scattering processes. There-
fore, a decrease of ∆v becomes the consequence and the
negative virtual energy is written in analogy to (27) as

∆B = ∆v −∆v
PB
Pv

, (118)

where PB is the probability for magnetic and Pv for
virtual scattering. Because magnetic scattering is char-
acterized by the Lorentz force, PB/Pv is written as

∆B = ∆v −∆v
|evFB sinβ|

∆v/ξv

= ∆v

[
1− |evFB sinβ|

∆v/ξv

]
, (119)

which holds if virtual dominates magnetic scattering,
∆v/ξv > |evFB sinβ|. This means that the influence
shows itself indirectly, i.e., electrons do not undergo a
change of the state of motion described by the Lorentz
force. However, as soon as magnetic dominates virtual
scattering, ∆v/ξv < |evFB sinβ|, they experience the
magnetic interaction and the bond breaks up. Next, the
subject for what cause an applied magnetic field destroys
the perfect conductivity is treated. This is expected to
arise the moment that a part of the electrons do no
longer interact via the superconducting interaction and
no longer perform virtual but real relaxation processes,
i.e., ∆v/ξv < |evFB sinβ|. Then, electrons relax in the
ground state and give off the electric energy which leads
to the decrease of the electric current and the finite re-
sistivity. Since the Lorentz force takes on its maximum
value for sinβ = 1, I get the following condition for the
destruction of the perfect conductivity

∆v

ξv
= evFBc, (120)

where Bc is the critical magnetic field. Now, (119) can
be put for sinβ = 1 to

∆B

∆v
=
[
1− B

Bc

]
. (121)

Furthermore, after inserting ξv = ~/πv into (120), re-
arranging it yields

Bc =
1

~evF
πv∆v. (122)
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For normal metals, we have (75) and (81), and thus we
have the temperature-dependent critical field

Bc =
√

2m
~evF

(
3
2
kBΥ0

) 3
2

×

[
1−

(
T

Υ0

) 5
2
][

1−
(
T

Υ0

)5
]

(123)

Bc
B0

=

[
1−

(
T

Υ0

) 5
2
][

1−
(
T

Υ0

)5
]
. (124)

In Fig. 30 function (124) is compared with the exper-
imental function

Bc
B0

=

[
1−

(
T

Υ0

)2
]
. (125)
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FIG. 30: Critical magnetic field Bc to its value B0 at T = 0 K
vs T/Υ0. The theoretical curve is given by (124) and the
experimental by (125).

As can be seen both functions are in good agreement.
And, for T = 0 K in (123), one obtains

Bc(T = 0 K) = B0 =
√

2m
~evF

(
3
2
kBΥ0

) 3
2

(126)

for the maximum critical field. In Table V for different
normal metals B0 is calculated and compared with the
experiment. One can say that the agreement is good and,
for Υ0 > 2 K, it is even excellent. In addition, I remind
that the value 1.5kB and not the BCS value 1.764kB is
used in (126) and that the chosen value predicts B0 bet-
ter which supports the point of view that ∆0/Υ0 takes
on the value 1.5kB instead of 1.764kB . At last, the mag-
netic properties are discussed. The configuration of the
electron system in a superconductor in a magnetic field
is the one with the minimum energy. Thus, because the

TABLE V: Experimental values of Υ0, vF , and B0 plus the-
oretical of B0 given by (126).

Experimenta Theory
Normal Υ0 vF B0 B0

metal (K) (106 ms−1) (10−3 T) (10−3 T)
Cd 0.56 1.62 3.0 1.9
Zn 0.875 1.83 5.3 3.4
Ga 1.091 1.92 5.1 4.5
Al 1.196 2.03 9.9 4.9
Tl 2.39 1.69 17.1 16.5
In 3.4 1.74 29.3 27.1
Sn 3.72 1.9 30.5 28.4
Hg 4.15 1.58 41.1 40.3
Pb 7.19 1.83 80.3 79.3

aN. W. Ashcroft and D. N. Mermin, Festkörperphysik (Olden-
bourg, München, 2007).

presence of a magnetic field decreases ∆B , it is expected
that the electron system exhibits a configuration in which
the magnetic field is expelled out of the sample, where
it is expected that this is achieved by electric screening
currents at the surface of the sample. This describes
a perfect diamagnet which is the observed behavior for
B < Bc. Its breakdown for B > Bc is explained by
the argument that as soon as electrons perform real re-
laxation processes and experience a resistance, the cur-
rents responsible for the screening cannot be kept up. If
all electrons experience the superconducting interaction
and perform virtual relaxation processes, again, no resis-
tance occurs and they can flow eternally. The Meißner-
Ochsenfeld effect, i.e., the expulsion of the magnetic field
in the superconducting state takes place independent of
how the state is reached, is seen to be also predicted be-
cause superconductivity is described by the emergence of
a new interaction. This is so because the configuration
which the electron system exhibits is determined by the
properties of the electrons and the interactions between
them and not by the history for what cause they emerge.

Up to now, we examined one side of the coin of a su-
perconductor in a magnetic field, the type I supercon-
ductors. However, there exists a second side, the type II
superconductors which are examined next.

In a type I superconductor, electrons do not undergo
a change of the state of motion due to the Lorentz force.
However, it is imaginable that there exists a scenario
in which they do undergo it and simultaneously inter-
act with each other via the superconducting interaction.
The occurrence of this second scenario is seen to mean
that electrons are in a type II superconductor, where its
appearance is seen to be: The decisive point is that it
is expected that the ground state predetermined at the
beginning of the virtual relaxation process must be equal
to the ground state reached after performing it, i.e., at
the beginning an electron possesses the energy Eg + Ev
and the momentum pg + pv and at the end it must pos-
sess the energy Eg and the momentum pg. Therefore, an
additional force is in general not allowed to act because



25

it would change the ground state during the relaxation
process. Nevertheless, there exists a scenario in which it
is allowed to act. Namely, if it acts in a way that after
performing the virtual relaxation process the electron is
again in its initial ground state. In a magnetic field, this
situation is achievable because an electron experiencing
the Lorentz force is moving in a circular orbit with the
cyclotron radius rc and after running through the orbit
once it is again in its initial state. Hence, if the virtual
relaxation process is performed during one such run, an
electron is able to experience both forces (114) and (115)
simultaneously. Next, an expression for ∆B in the second
scenario is formulated by assuming that the scattering
probability is proportional to the inverse relaxation time
t−1, which converts (118) into

∆B = ∆v −∆v
τv
tB
, (127)

where tB is the magnetic relaxation time. Further-
more, since the relaxation time is the relaxation length
divided by the mean velocity, t = l/v̄, and v̄ is the same
for both relaxation times, (127) is equivalent to

∆B = ∆v −∆v
λv

2πrc
, (128)

where the magnetic relaxation length is chosen to be
the circumference of the circular orbit. By equating the
Lorentz and the centripetal force one gets

rc =
mv

eB
. (129)

And, with the quantum condition

mvr = n~, (130)

in which r is identified with rc, one gets

rc =

√
n

~
eB

, (131)

where n = 1, 2, 3, . . . Finally, with (54), (128), and
(131), one has

∆B = ∆v

[
1− ~vF

4π∆v

√
eB

n~

]
, (132)

where I expect that (132) is only valid for n = 1. This
is so because the smallest cyclotron radius is seen to be
connected with sinβ = 1, which is used for the relaxation
length (v̄ is chosen to be vF and not vF sinβ), and (132)
becomes

∆B = ∆v

[
1− ~vF

4π∆v

√
eB

~

]
. (133)

Now, because electrons want to minimize their energy
by maximizing ∆B , they exhibit the first scenario if (119)
exceeds (133) and the second if (133) exceeds (119). The
condition for the equality of (119) and (133) is

∆v

[
1− evFBc1

∆v/ξv

]
= ∆v

[
1− ~vF

4π∆v

√
eBc1

~

]
, (134)

where sinβ = 1 is used which yields with ξv = ~/πv

Bc1 =
1

16π2~e
π2
v , (135)

where Bc1 is the lower critical magnetic field and for
B < Bc1 electrons exhibit the first scenario [∆B given
by (119) for sinβ = 1 exceeds ∆B given by (133)]. At
T = 0 K, one has ∆0 = π2

0/2m and one gets

Bc1(T = 0 K) = B01 =
m

8π2~e
∆0. (136)

And, there exists an upper critical magnetic field Bc2
if ∆B given by (128) and (133) becomes zero

∆v

[
1− λv

2πrc

]
= 0, (137)

which yields

λv = 2πrc (138)

~vF
2∆v

= 2π
√

~
eBc2

(139)

and, finally,

Bc2 =
16π2

~ev2
F

∆2
v. (140)

For Bc1 < B < Bc2, electrons exhibit the second sce-
nario in which ∆B is given by (133). At T = 0 K, one
gets

Bc2(T = 0 K) = B02 =
16π2

~ev2
F

∆2
0. (141)

And, with the aid of (140), (133) can be put to

∆B

∆v
=

[
1−

√
B

Bc2

]
. (142)
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Now, a superconductor is of type II if its critical field
B02 exceeds its critical field B0 because then electrons
exhibit, for Bc1 < B < Bc2, the second scenario. Thus,
the condition for type II superconductivity goes

B02 > B0, (143)

which yields with (126) and (141)

16π2

~ev2
F

∆2
0 >

√
2m

~evF
∆

3
2
0 , (144)

which can be rearranged to

128π4∆0

mv2
F

> 1. (145)

With the aid of (145), the minimum value Υmin
0 for

type II superconductivity can be estimated if one takes
the typical value vF ≈ 106 ms−1 and Υ0 ≈ ∆0/kB

Υmin
0 ≈ 10 K, (146)

which is the order of magnitude expected from the ex-
periment. In Figs. 31 and 32 the considerations made
are depicted. Unfortunately, the scatter of experimen-
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FIG. 31: Negative virtual energy ∆B to its value ∆v at B = 0
vs B/Bc. Electrons have two options to interact with each
other and choose the one with which they can maximize their
binding energy ∆B . In the first scenario (a), ∆B is given
by (121). In the second scenario (b), ∆B is given by (142).
Since (121) exceeds (142) for all fields, electrons only exhibit
the first scenario and we have a type I superconductor.

tal values of Bc1 and Bc2 is great which is why they are
not compared with the theory. At last, the magnetic
properties of a type II superconductor are discussed. For
B < Bc1, the behavior of the electrons is equivalent to
the one in a type I superconductor. For Bc1 < B < Bc2,
though, a different behavior occurs for a part of them.
Since in this scenario the electron is moving in a circular
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FIG. 32: Negative virtual energy ∆B to its value ∆v at B = 0
vs B/Bc. Electrons have two options to interact with each
other and choose the one with which they can maximize their
binding energy ∆B . In the first scenario (a), ∆B is given by
(121). In the second scenario (b), ∆B is given by (142). For
B < Bc1, (121) exceeds (142) and electrons exhibit the first
scenario. For Bc1 < B < Bc2, (142) exceeds (121) and elec-
trons exhibit the second scenario. Because electrons exhibit
both scenarios we have a type II superconductor.

r
c

FIG. 33: Two interacting electrons in the second scenario.
The radius of the circular orbit in which they are moving
equals rc =

√
~/eB. During one run the virtual relaxation

processes are performed and, thereafter, the inverse ones are
performed during a second run.

orbit, the configuration of the two electrons interacting
with each other is expected to consist of one orbit in
which both are moving on the opposite side, see Fig. 33.
As it can be shown,24 an electron moving in a closed orbit
is connected with a magnetic flux of a flux quantum

Φ0 =
h

e
, (147)

or, in our case, two electrons moving in a closed orbit
are connected with a flux quantum

Φ0 =
h

2e
. (148)

Therefore, as it is observed, the magnetic field is pene-
trating into the sample because every bond in the second
scenario leads to the penetration of the magnetic flux of
Φ0 = h/2e. In the remaining part, again, it is expelled
out of. At the end, I note that the critical fields Bc, Bc1,
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and Bc2 given by (122), (135), and (140), respectively,
fulfill the condition

B2
c = Bc1Bc2. (149)

VI. CONCLUSION

This work approaches the mystery of understanding
superconductivity from a new direction. Instead of us-
ing the proven quantum physical equations, it is tried to
get to the origins of interactions, which were so far not
questioned. Therefore, a new idea is postulated which is
that particles may possess an additional excitation en-
ergy which is called virtual. Its magnitude is determined
by equating one central equation of quantum physics,
Heisenberg’s uncertainty relation t(E) = 2~/E and the
central equation for the electrical resistivity, the Drude
formula t(E) = m/ρ(E)ne2, where it turns out that the
obtained orders of magnitude are appropriate. And, with
the aid of the virtual energy, particles have energetic lee-
way which they use to interact with each other. In the
following, I sum up my obtained results.

At first, I emphasize that with the aid of the quantities
concerning time, energy, space, and momentum obtained
from the equating all major phenomena connected with
superconductivity can be explained, where which of and
in which way they had to be used imposed itself. At
this point, however, it should be said that there exists a
significant difference between the two treated solid-state
configurations. For the normal metals, the behavior of
and the properties of the electrons can be assumed to
be well understood, e.g., we know their states and the
excitation-energy-dependent relaxation time. For the an-
tiferromagnetic lattice, though, this understanding is not
so well-developed, e.g., there is a lack of an established
excitation-energy-dependent relaxation time. Therefore,
to illustrate its functioning, the postulate is mostly ap-
plied to the normal metals. Furthermore, as one can con-
vince oneself from Subsecs. V A to V E, the new approach
simplifies the description of superconductivity. Now, I
would like to emphasize the two strengths of this work.
First, it sets superconducting in relation to other prop-
erties of a solid, e.g., electrical via the relaxation time
and thermal via the equipartition relation, which makes
superconductivity no longer as isolated. Second, the in
my opinion decisive criterion for a good theory, it makes
predictions in good agreement with the experiment. The
most impressing ones are: The formulas for the critical
magnetic fields [Bc given by (122), Bc1 by (135), and Bc2
by (140)] and the condition for type II superconductivity
given by (145), where all expressions only contain well-
known quantities. And, the temperature dependences ∆v

given by (75), ce by (106), and Bc by (124). All these ex-
pressions have, due to their simplicity and precision, the
quality to replace the so far established ones. This is why
this work makes in any case an important contribution
to superconductivity.

At the end, I note that, if the presented ideas turn out
to be true, they improve our understanding of physics
on a grand scale and they would open up a new door
to do physics. And, if this case arises, I hope that this
work awakes enthusiasm for everyone who enjoys explor-
ing new and unknown territory.

APPENDIX A: INFLUENCE OF CONJURED UP
VIRTUAL PARTICLES ON RELAXATION

PROCESSES

To obtain the influence, I look how many more hops
are needed on average to lose the excitation energy as a
function of Pgg. Hence, I calculate after how many hops
on average the energy Ξx is lost which leads to multiply-
ing functions (32) and (37) by a factor W . If no virtual
particles are present, Pgg = 1, it is lost after one hop. If
they are present, it is lost after one hop with the proba-
bility

Pgg, (A1)

after two hops with the probability

Pgg(1− Pgg), (A2)

after three hops with the probability

Pgg(1− Pgg)2, (A3)

and after i hops with the probability

Pgg(1− Pgg)i−1. (A4)

(1−Pgg)i−1 is the probability of finding i−1 hops that
cost no energy which is the condition for losing Ξx after i
hops. Now, W is obtained by adding up all probabilities
and weighting each with its number of hops,

W =
∞∑
i=1

iPgg(1− Pgg)i−1. (A5)

Furthermore, multiplying (A5) by 1− Pgg yields

W (1− Pgg) =
∞∑
i=1

iPgg(1− Pgg)i. (A6)

Next, (A6) is subtracted from (A5)

WPgg =
∞∑
i=1

Pgg(1− Pgg)i−1, (A7)
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where it is assumed that the last term of the summa-
tion in (A6) vanishes,

lim
i→∞

iPgg(1− Pgg)i = 0, (A8)

where it should be kept in mind that Pgg and 1− Pgg
are probabilities and take on values 0 ≤ Pgg, 1−Pgg ≤ 1.
Furthermore, (A7) is simplified to

W =
∞∑
i=1

(1− Pgg)i−1. (A9)

The expression on the right-hand side of (A9) is equiv-
alent to a geometric series

∞∑
i=1

(1− Pgg)i−1 =
1
Pgg

. (A10)

Therefore, the factor W by which function (37) has to
be multiplied becomes

W =
1
Pgg

. (A11)

APPENDIX B: NEW INSIGHTS TO THE
ELECTRICAL RESISTIVITY

The electrical resistivity can be described by the Drude
model. In it the formula for the resistivity is

ρ =
m

ne2t
, (B1)

where m is the mass and e the charge of an electron,
which are constants, n is the density of electrons, which
is a constant (semiconductors are an exception because
in them n depends on the temperature), and t the re-
laxation time. To my mind, the quantities m, e, and
n are understood. However, for the relaxation time I
think this is not the case, where I understand it as fol-
lows: The relaxation time t is the mean period of time
within which an electron loses its excitation energy E,
where E is the total excitation energy resulting from all
mechanisms responsible for a gain of energy.25 From the
new interpretation new insights follow, such as, an ex-
planation for Ohm’s law and a new limit for its range of
validity, which are presented next by means of electrons
in a normal metal.

At first, the excitation energy of an electron is ex-
pressed as

E = Etherm + Eel, (B2)

where Etherm is the thermal and Eel the electric energy
gained due to the applied electric field. Then, Etherm is
connected with T via

Etherm =
3
2
kBT. (B3)

Next, Eel is estimated with the drift velocity vD and
the electric current density

j =
1
ρ
E (B4)

= nevD, (B5)

where E is the electric field. From (B4) and (B5) one
gets

vD =
1
ρne
E . (B6)

Furthermore, Eq. (44) is used to connect vD with Eel

Eel =
1
2
m(2vF vD cos γ + v2

D), (B7)

where p = mv is used and vv is identified with vD.
Expression (B7) is further reduced to

Eel = mvF vD, (B8)

because it is expected that vF � vD and therefore elec-
trons with cos γ = 1 dominate the magnitude of Eel.26
Now, by inserting (B6) into (B8) one obtains

Eel =
mvF
ρne
E . (B9)

Next, the energies Etherm and Eel are compared. To
do that ρ(E) is obtained by combining (B1), (21), and
(22)

ρ(E) =
124m
ne2A

(
2E

3kBΘ

)5

, (B10)

where it is assumed that thermal and electric processes
can be treated in a related way so that the resistivity can
be described by (B10) in which E is given by (B2). Now,
the condition for Etherm = Eel is determined to be able to
say which energy dominates. Since Etherm = Eel implies
that E = Etherm + Eel = 2Etherm = 3kBT , equating
(B3) and (B9) and using (B10) yields

T 6

E
=
evFAΘ5

5952kB
. (B11)
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In case that

T 6

E
� evFAΘ5

5952kB
(B12)

one gets Etherm � Eel, and in case that

T 6

E
� evFAΘ5

5952kB
(B13)

one gets Etherm � Eel. In addition, (B11) is rewritten
to

TOhm =
(
evFAΘ5

5952kB
E
) 1

6

, (B14)

EOhm =
5952kB
evFAΘ5

T 6, (B15)

where the temperature at which Etherm = Eel for the
electric field E is called Ohm’s temperature TOhm, and
the electric field for which Etherm = Eel at the tempera-
ture T Ohm’s field EOhm. To get a feeling of the orders
of magnitude, values of AΘ5 and vF from Tables II and
V for aluminum and the typical values E ≈ 1 Vm−1 and
T ≈ 300 K are inserted into (B14) and (B15)

TAl
Ohm ≈ 10 K, (B16)

EAl
Ohm ≈ 1010 V

m
. (B17)

At T � TOhm and for E � EOhm one gets Etherm �
Eel, and at T � TOhm and for E � EOhm one gets
Etherm � Eel. This behavior accounts for the valid-
ity of Ohm’s law because, usually, one examines it at
T � TOhm and for E � EOhm (e.g., at room temperature
T ≈ 300 K and for E ≈ 1 Vm−1), where Etherm � Eel.
This means that the excitation energy becomes E =
Etherm because Eel in (B2) can be neglected and that
the relaxation time becomes independent of E . There-
fore, because m, e, n, and t are constant values, the elec-
trical resistivity (B1) becomes a constant value which is
the statement of Ohm’s law. Furthermore, there exists
the case T � TOhm and E � EOhm in which Ohm’s law
is not valid since ρ depends on E . Now, I examine this
limit Etherm � Eel which means that E = Eel. Hence,
Eel given by (B8) is inserted into (B10), and thereafter
this expression is inserted into (B4)

j =
ne2A

124m

(
3kBΘ

2mvF vD

)5

E . (B18)

Next, vD given by vD = j/ne is inserted into (B18)

j =
(
n6e7k5

BAΘ5

16m6v5
F

) 1
6

E 1
6 . (B19)

As can be seen in the limit Etherm � Eel the linear
connection between j and E is not valid. In Figs. 34 and
35 the considerations made are illustrated. One insight
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FIG. 34: The electric current density j to its maximum value
jmax at T = 0 K vs T/TOhm for a constant electric field. The
relationship between j and T is obtained by inserting (B10)
into (B4) and using E = Etherm+Eel = 3kBT/2 +mvF j/ne.
The values of vF , n, and AΘ5 are taken from Tables II and
V for aluminum and E is chosen to be E = 1 Vm−1. The
dashed line represents the picture developed so far in which
the energy E is only identified with the thermal energy E =
3kBT/2. In the limit T � TOhm (Etherm � Eel) the lines
coincide.

that also follows is that the picture that the electrical
resistivity in a perfect crystalline solid vanishes if the
temperature vanishes is false (i.e., limT→0 ρ > 0 instead
of limT→0 ρ = 0). This is so because even if the tem-
perature becomes small or vanishes, there still exists Eel
which leads to a finite resistivity, where Eel vanishes only
if E = 0 when no electric current flows. And, for a given
electric field E , there exists the maximum current density
jmax at T = 0 K given by (B19).

At last, I present an explanation for the temperature
independence of ρ due to scattering on lattice imperfec-
tions. It is assumed that their density is independent of
the temperature and that the scattering probability and
thereby the resistivity is proportional to the velocity of
the electrons

ρ ∝ v, (B20)

which is inspired by the picture that the faster an
electron moves, the more often it passes a lattice im-
perfection on which it is scattered. Its velocity v con-
stitutes of the Fermi velocity vF , the thermal velocity
vtherm, and the drift velocity vD. Since it is expected that
vF � vtherm, vD,27 one gets v = vF which means that v
and ρ are independent of vtherm and vD, and thereby of
the temperature T and the electric field E .
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FIG. 35: The electric current density j to its value j0 at
E/EOhm = 1 vs E/EOhm at a constant temperature on a
double-logarithmic scale. The relationship between j and
E is obtained by inserting (B10) into (B4) and using E =
Etherm+Eel = 3kBT/2+mvF j/ne. The values of vF , n, and
AΘ5 are taken from Tables II and V for aluminum and T is
chosen to be T = 300 K. The dashed line represents Ohm’s
law in the picture developed so far in which the energy E is
only identified with the thermal energy E = 3kBT/2. The
picture developed within this work says that Ohm’s law holds
only in the limit E � EOhm (Etherm � Eel) and that the
resistivity depends on E as soon as E reaches the order of
magnitude of EOhm.
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